Math, asked by dhivyaa08, 6 months ago

find the value of the question​

Attachments:

Answers

Answered by Anonymous
5

\huge\bold{\mathbb{QUESTION}}

Find the value of the question:

(i) 2^{-3}

(ii) {\dfrac{1}{3^{-3}}}

\huge\bold{\mathbb{TO\: FIND}}

The value.

\huge\bold{\mathbb{SOLUTION}}

We know that:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\:\underline{\: \boxed{\large \sf{a^{-b}={\dfrac{1}{a^b}}}}\:}\:}

Let's find the value of 2^{-3}.

2^{-3}

={\dfrac{1}{2^3}}

={\dfrac{1}{(2\times2\times2)}}

={\dfrac{1}{8}}

So, 2^{-3}={\dfrac{1}{8}}.

\:

Let's find the value of {\dfrac{1}{3^{-3}}}.

{\dfrac{1}{3^{-3}}}

={\dfrac{1}{{\frac{1}{3^{3}}}}}

={\dfrac{1}{{\frac{1}{(3\times3\times3)}}}}

={\dfrac{1}{{\frac{1}{27}}}}

=1\div {\dfrac{1}{27}}

=1\times {\dfrac{27}{1}}

=\cancel{1} \times {\dfrac{27}{\cancel{1}}}

=27

So, {\dfrac{1}{3^{-3}}}=27

\huge\bold{\mathbb{ANSWER}}

(i) 2^{-3}={\dfrac{1}{8}}

(ii) {\dfrac{1}{3^{-3}}}=27

\huge\bold{\mathbb{WE\:\,MADE\:\,IT\:\,!!}}

Answered by spoortihugar
1

Answer:

1)-8

2)27

Step-by-step explanation:

plz follow me....

Similar questions