Math, asked by laeeqhajeera, 2 months ago

Find the value of the unknown constant . The sum is in the picture. pls solve it in a notebook . it's urgent​

Attachments:

Answers

Answered by McPhoenix
15

2b - 6 + 3 = 5

2b = 8

b = 4

Answered by BrainlySparrow
259

Step-by-step explanation:

\red{\mid{\fbox{\tt{Question:}}\mid}}

 \displaystyle{ {5}^{2b - 6} \times 125 =  (\frac{1}{5}) {}^{ - 5}  }

\red{\mid{\fbox{\tt{Solution:}}\mid}} \:

 \displaystyle{ \implies \:  {5}^{2b - 6}  \times 125 = ( \frac{1}{5}) {}^{ - 5}  }

As we know that,

 \sf{ {a}^{ - n}  =   \frac{1}{ {a}^{n} } }

  • 125 = 5 X 5 X 5

 \displaystyle{ \implies \:  {5}^{2b - 6}  \times  {5}^{3} =  {5}^{5}   }

As we know that,

 \sf{ {a}^{m}  \times  {a}^{n}  =  {a}^{m + n} }

 \displaystyle{ \implies \:  {5}^{(2b - 6) + 3}  =  {5}^{5} }

As now the bases are same so we can now equate with the powers:

 \displaystyle{ \implies \: (2b - 6) + 3 = 5}

 \displaystyle{ \implies \: 2b - 6 = 5 - 3} \:

 \displaystyle{ \implies \: 2b - 6 = 2} \:

 \displaystyle{ \implies \: 2b = 2 + 6} \:

 \displaystyle{ \implies \: 2b = 8} \:

 \displaystyle{ \implies \: b =   \cancel\frac{8}{2} } \:

 \displaystyle{ \implies \: b = 4} \:

∴ Value of the unknown constant(b) is 4.

\red{\mid{\fbox{\tt{More \:  Information :}}\mid}} \:

\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}

Similar questions