Math, asked by laeeqhajeera, 2 months ago

Find the value of the unknown constant . The sum is in the picture. pls solve it in a notebook . it's urgent​

Attachments:

Answers

Answered by Anonymous
85

\bf\red{Answer :-}

c = 5

\bf\red{Given :-}

 \bigg( \frac{7}{9}  \bigg) {}^{ - 3}  \div  \bigg( \frac{9}{7}  \bigg) {}^{  - 2}  \times  \bigg( \frac{7}{9}  \bigg)  {}^{3c - 2} =  \bigg( \frac{9}{7}  \bigg) {}^{ - 8}

\bf\red{To\: find :-}

Value of C

\bf\red{Formulae\: implemented:- }

From exponent and laws,

 \bigg( \frac{a}{b}  \bigg) {}^{ - n}  =  \bigg( \frac{b}{a}  \bigg) {}^{n}

a {}^{m}   \times a {}^{n}  = a {}^{m + n}

 \bigg( \frac{a {}^{m} }{a {}^{n} }  \bigg)  = a {}^{m - n}

If bases are equal then powers also equal.

\bf\red{Solution:-}

》 We shall first convert into same bases by using formula (a/b)⁻ⁿ = (b/a)ⁿ

》 Converting as a same base of 7/9 In L.H.S and R.H.S

 =  \bigg( \frac{7}{9}  \bigg) {}^{ - 3}  \div  \bigg( \frac{7}{9}  \bigg) {}^{2}  \times  \bigg( \frac{7}{9}  \bigg) {}^{3c - 2}  =  \bigg( \frac{7}{9}  \bigg) {}^{8}

Now all bases are same

 \frac{ \bigg( \frac{7}{9}  \bigg) {}^{ - 3}  \times  \bigg( \frac{7}{9} \bigg) {}^{3c - 2}  }{ \bigg( \frac{7}{9} \bigg) {}^{2}  }  =  \bigg( \frac{7}{9}  \bigg) {}^{8}

Applying the 3rd formulae then denominator gets removed

 \bigg( \dfrac{a {}^{m} }{a {}^{n} }  \bigg)  = a {}^{m - n}

 \bigg( \frac{7}{9}  \bigg) {}^{ - 3 - 2}  \times  \bigg( \frac{7}{9}  \bigg) {}^{3c - 2}  =  \bigg( \frac{7}{9}  \bigg) {}^{8}

 \bigg( \frac{7}{9}  \bigg) {}^{ - 5}  \times  \bigg( \frac{7}{9}  \bigg) {}^{3c - 2}  =  \bigg( \frac{7}{9}  \bigg) {}^{8}

Applying the 2nd formula

a {}^{m}   \times a {}^{n}  = a {}^{m + n}

 \bigg( \frac{7}{9}  \bigg) {}^{ - 5 + 3c - 2 =  }  \bigg( \frac{7}{9}  \bigg) {}^{8}

 \bigg( \frac{7}{9}  \bigg) {}^{ 3c - 7=  }  \bigg( \frac{7}{9}  \bigg) {}^{8}

As bases are equal Powers also should be equal So,

3c - 7 = 8

3c = 7 + 8

3c = 15

c = 15 \div 3

\red{c = 5}

\bf\red{So, \:the\: value\: of\: c\: is\: 5}

Similar questions