Math, asked by barbiegirl2456, 5 months ago

Find the value of the unknown variables.
please tell me these questions (e),and (f) step by step like I take the picture of the questions like that you can answer me ​

Attachments:

Answers

Answered by Anonymous
7

e))

Given :

\boxed{\bf\dfrac{a+7}{2}+\dfrac{3a}{5}=1}

To Find :

The value of a.

Solution :

Analysis :

Using suitable identities and evaluating as per the signs we can find the value of a.

Explanation :

\\ :\implies\sf\dfrac{a+7}{2}+\dfrac{3a}{5}=1

Taking LCM of 5 and 2 = 10,

Dividing the denominator with the LCM and then multiplying the numerator with the quotient of denominator,

\\ :\implies\sf\dfrac{5(a+7)+2(3a)}{10}=1

Expanding the brackets,

\\ :\implies\sf\dfrac{5a+35+6a}{10}=1

After evaluation,

\\ :\implies\sf\dfrac{11a+35}{10}=1

By cross multiplying,

\\ :\implies\sf11a+35=1\times10

\\ :\implies\sf11a+35=10

Transposing 35 to RHS,

\\ :\implies\sf11a=10-35

\\ :\implies\sf11a=-25

\\ :\implies\sf a=\dfrac{-25}{\ \ \ 11}

\\ \therefore\boxed{\bf a=\dfrac{-25}{\ \ \ 11}.}

The value of a is -25/11.

Verification :

RHS :

\\ :\implies\sf\dfrac{\frac{-25}{\ \ \ 11}+7}{2}+\dfrac{3\times\frac{-25}{\ \ \ 11}}{5}

\\ :\implies\sf\dfrac{\frac{-25+77}{11}}{2}+\dfrac{\frac{-75}{\ \ \ 11}}{5}

\\ :\implies\sf\dfrac{\frac{52}{11}}{2}+\dfrac{\frac{-75}{\ \ \ 11}}{5}

\\ :\implies\sf\left(\dfrac{52}{11}\times\dfrac{1}{2}\right)+\left(\dfrac{-75}{\ \ \ 11}\times\dfrac{1}{5}\right)

\\ :\implies\sf\left(\dfrac{\cancel{52}\ \ ^{26}}{11}\times\dfrac{1}{\not{2}}\right)+\left(\dfrac{\cancel{-75}\ \ ^{-15}}{\ \ \ 11}\times\dfrac{1}{\not{5}}\right)

\\ :\implies\sf\left(\dfrac{26}{11}\times\dfrac{1}{1}\right)+\left(\dfrac{-15}{\ \ \ 11}\times\dfrac{1}{1}\right)

\\ :\implies\sf\dfrac{26}{11}+\dfrac{-15}{\ \ \ 11}=1

\\ :\implies\sf\dfrac{26+(-15)}{11}

\\ :\implies\sf\dfrac{26-15)}{11}

\\ :\implies\sf\dfrac{11}{11}

\\ :\implies\sf\cancel{\dfrac{11}{11}}

\\ \therefore\boxed{\bf1.}

RHS :

\\ \therefore\boxed{\bf1.}

LHS = RHS.

  • Hence verified.

______________________________________

f))

Given :

\boxed{\bf\dfrac{3a+2}{5}=5}

To Find :

The value of a.

Solution :

Analysis :

Using suitable identities and evaluating as per the signs we can find the value of a.

Explanation :

\\ :\implies\sf\dfrac{3a+2}{5}=5

By cross multiplying,

\\ :\implies\sf3a+2=5\times5

\\ :\implies\sf3a+2=25

Transposing 2 to RHS,

\\ :\implies\sf3a=25-2

\\ :\implies\sf3a=23

\\ :\implies\sf a=\dfrac{23}{3}

\\ \therefore\boxed{\bf a=\dfrac{23}{3}.}

The value of a is 23/5.

Verification :

LHS :

\\ :\implies\sf\dfrac{3\times\frac{23}{3}+2}{5}

\\ :\implies\sf\dfrac{\not{3}\times\frac{23}{\not{3}}+2}{5}

\\ :\implies\sf\dfrac{23+2}{5}

\\ :\implies\sf\dfrac{25}{5}

\\ :\implies\sf\cancel{\dfrac{25}{5}}

\\ \therefore\boxed{\bf5.}

RHS :

\\ \therefore\boxed{\bf5.}

LHS = RHS.

  • Hence verified.
Similar questions