Math, asked by praveen12334, 10 months ago

find the value of theta, if 2cos^2theta +Sintheta-
2=0​

Answers

Answered by xdoratheexplorer
0

Answer:

Θ=0°,60°

Step-by-step explanation:

2cos^{2}Θ+sinΘ-2=0

cos2Θ+sinΘ-1=0(2cos^{2}Θ-1=cos2Θ)

1-2sin^{2}Θ+sinΘ-1=0(cos2Θ=1-2sin^{2}Θ)

sinΘ-2sin^{2}Θ=0

sinΘ(1-2sinΘ)=0

1. sinΘ=0       2.1-2sinΘ=0

  Θ=0°               2sinΘ=1

                          sinΘ=1/2

                          Θ=30°

Answered by hukam0685
3

Answer:

 \theta = 0° \\  \\  \theta = 30° \\

Step-by-step explanation:

2 \:  {cos}^{2}  \theta + sin \:  \theta - 2 = 0 \\

it can be converted in quadratic equation in sine function

2 \:(1 -   {sin}^{2}  \theta )+ sin \:  \theta - 2 = 0 \\  \because \:  {sin}^{2}  \theta  +  {cos}^{2}  \theta = 1 \\  \\ 2 \: - 2  {sin}^{2}  \theta + sin \:  \theta - 2 = 0 \\  \\ - 2  {sin}^{2}  \theta + sin \:  \theta = 0 \\  \\ sin \theta(1 - 2sin \theta) = 0 \\  \\ sin \theta = 0 \\ \\  \theta = 0°  \\ or \\  \\ 1 - 2sin \theta = 0 \\ \\  sin\theta  =  \frac{1}{2} \\  \\  \theta = 30° \\  \\

Hope it helps you.

Similar questions