Math, asked by Faithsara, 4 months ago

find the value of theta if (sin² theta)÷ tan² theta - sin²theta = 3​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{ \sin ^{2} ( \theta) }{ \tan ^{2} ( \theta)  -  \sin ^{2} ( \theta) } = 3  \\

  \implies\frac{ \sin ^{2} ( \theta) }{ \sin ^{2} ( \theta)( \frac{1}{ \cos ^{2} ( \theta) }   -  1)} = 3  \\

 \implies \frac{ \cos^{2} ( \theta) }{ \sin^{2} ( \theta) }  = 3 \\

 \implies \cot^{2} ( \theta)  = 3

 \implies  \tan ^{2} ( \theta)  =  \frac{1}{3}  \\

 \implies  \tan ^{2} ( \theta)  =  \tan ^{2} ( \frac{\pi}{6} ) \\

 \implies  \theta = n\pi  ±\frac{\pi}{6}  \\

Answered by vishu126191
0

Answer:

We have,

\begin{gathered} \frac{ \sin ^{2} ( \theta) }{ \tan ^{2} ( \theta) - \sin ^{2} ( \theta) } = 3 \\ \end{gathered}

tan

2

(θ)−sin

2

(θ)

sin

2

(θ)

=3

\begin{gathered} \implies\frac{ \sin ^{2} ( \theta) }{ \sin ^{2} ( \theta)( \frac{1}{ \cos ^{2} ( \theta) } - 1)} = 3 \\ \end{gathered}

sin

2

(θ)(

cos

2

(θ)

1

−1)

sin

2

(θ)

=3

\begin{gathered} \implies \frac{ \cos^{2} ( \theta) }{ \sin^{2} ( \theta) } = 3 \\ \end{gathered}

sin

2

(θ)

cos

2

(θ)

=3

\implies \cot^{2} ( \theta) = 3⟹cot

2

(θ)=3

\begin{gathered} \implies \tan ^{2} ( \theta) = \frac{1}{3} \\ \end{gathered}

⟹tan

2

(θ)=

3

1

\begin{gathered} \implies \tan ^{2} ( \theta) = \tan ^{2} ( \frac{\pi}{6} ) \\ \end{gathered}

⟹tan

2

(θ)=tan

2

(

6

π

)

\begin{gathered} \implies \theta = n\pi ±\frac{\pi}{6} \\\end{gathered}

⟹θ=nπ±

6

π

Similar questions