find the value of theta if (sin² theta)÷ tan² theta - sin²theta = 3
Answers
Step-by-step explanation:
We have,
Answer:
We have,
\begin{gathered} \frac{ \sin ^{2} ( \theta) }{ \tan ^{2} ( \theta) - \sin ^{2} ( \theta) } = 3 \\ \end{gathered}
tan
2
(θ)−sin
2
(θ)
sin
2
(θ)
=3
\begin{gathered} \implies\frac{ \sin ^{2} ( \theta) }{ \sin ^{2} ( \theta)( \frac{1}{ \cos ^{2} ( \theta) } - 1)} = 3 \\ \end{gathered}
⟹
sin
2
(θ)(
cos
2
(θ)
1
−1)
sin
2
(θ)
=3
\begin{gathered} \implies \frac{ \cos^{2} ( \theta) }{ \sin^{2} ( \theta) } = 3 \\ \end{gathered}
⟹
sin
2
(θ)
cos
2
(θ)
=3
\implies \cot^{2} ( \theta) = 3⟹cot
2
(θ)=3
\begin{gathered} \implies \tan ^{2} ( \theta) = \frac{1}{3} \\ \end{gathered}
⟹tan
2
(θ)=
3
1
\begin{gathered} \implies \tan ^{2} ( \theta) = \tan ^{2} ( \frac{\pi}{6} ) \\ \end{gathered}
⟹tan
2
(θ)=tan
2
(
6
π
)
\begin{gathered} \implies \theta = n\pi ±\frac{\pi}{6} \\\end{gathered}
⟹θ=nπ±
6
π