find the value of theta, if
Answers
Answer:-
Given:-
tan θ + cot θ = 4/√3
Using tan θ = sin θ/cos θ and cot θ = cos θ/sin θ we get;
⟹ (sin θ/cos θ) + (cos θ/sin θ) = 4/√3
Now, taking LCM in LHS we get,
⟹ (sin² θ + cos² θ) / cos θ sin θ = 4/√3
using the identity sin² θ + cos² θ = 1 we get,
⟹ 1/cos θ sin θ = 4/√3
Now,
On squaring both sides we get,
⟹ 1/sin² θ cos² θ = (4/√3)²
Using cos² θ = 1 - sin² θ we get,
⟹ 1/ sin² θ (1 - sin² θ) = 16/3
⟹ 1/sin² θ - sin⁴ θ = 16/3
On cross multiplication we get,
⟹ 3 = 16(sin² θ - sin⁴ θ)
⟹ 3 = 16 sin² θ - 16 sin⁴ θ
⟹ 16 sin⁴ θ - 16 sin² θ + 3 = 0
⟹ 16 sin⁴ θ - 12 sin² θ - 4 sin² θ + 3 = 0
⟹ 4 sin² θ (4 sin² θ - 3) - 1(4 sin² θ - 3) = 0
⟹ (4 sin² θ - 1)(4 sin² θ - 3) = 0
★ 4 sin² θ - 1 = 0
⟹ 4 sin² θ = 1
⟹ sin² θ = (1/4)
⟹ (sin θ)² = (1/2)²
⟹ sin θ = 1/2
- sin 30° = 1/2
So,
⟹ θ = 30°
(or)
★ 4 sin² θ - 3 = 0
⟹ 4 sin² θ = 3
⟹ sin² θ = (3/4)
⟹ (sin θ)² = (√3/2)²
⟹ sin θ = √3/2
- sin 60° = √3/2.
⟹ θ = 60°
∴ The possible values of " θ " are 30° and 60°.
Given :
Exigency To Find : The Value of [ theta ]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀⠀Finding value of [ theta ] :
By Squaring Both L.H.S & R.H.S :
Therefore,
Either ,
Therefore,
⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀