Math, asked by rishitha4185, 3 months ago

find the value of theta, if
 \tan \: theta \:  +  \cot \: theta \:  = 4 \div   \sqrt{3}

Answers

Answered by VishnuPriya2801
56

Answer:-

Given:-

tan θ + cot θ = 4/√3

Using tan θ = sin θ/cos θ and cot θ = cos θ/sin θ we get;

⟹ (sin θ/cos θ) + (cos θ/sin θ) = 4/√3

Now, taking LCM in LHS we get,

⟹ (sin² θ + cos² θ) / cos θ sin θ = 4/√3

using the identity sin² θ + cos² θ = 1 we get,

⟹ 1/cos θ sin θ = 4/√3

Now,

On squaring both sides we get,

⟹ 1/sin² θ cos² θ = (4/√3)²

Using cos² θ = 1 - sin² θ we get,

⟹ 1/ sin² θ (1 - sin² θ) = 16/3

⟹ 1/sin² θ - sin⁴ θ = 16/3

On cross multiplication we get,

⟹ 3 = 16(sin² θ - sin⁴ θ)

⟹ 3 = 16 sin² θ - 16 sin⁴ θ

⟹ 16 sin⁴ θ - 16 sin² θ + 3 = 0

⟹ 16 sin⁴ θ - 12 sin² θ - 4 sin² θ + 3 = 0

⟹ 4 sin² θ (4 sin² θ - 3) - 1(4 sin² θ - 3) = 0

⟹ (4 sin² θ - 1)(4 sin² θ - 3) = 0

4 sin² θ - 1 = 0

⟹ 4 sin² θ = 1

⟹ sin² θ = (1/4)

⟹ (sin θ)² = (1/2)²

⟹ sin θ = 1/2

  • sin 30° = 1/2

So,

⟹ θ = 30°

(or)

4 sin² θ - 3 = 0

⟹ 4 sin² θ = 3

⟹ sin² θ = (3/4)

⟹ (sin θ)² = (√3/2)²

⟹ sin θ = √3/2

  • sin 60° = √3/2.

⟹ θ = 60°

The possible values of " θ " are 30° and 60°.


TheMoonlìghtPhoenix: Awesome!!
VishnuPriya2801: Thank you ! :)
Answered by BrainlyRish
91

Given :   \sf tan \: theta \: + cot \: theta \: = \dfrac{4 }{ \sqrt{3}}

Exigency To Find : The Value of \theta [ theta ]

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Finding value of \theta [ theta ] :

 \qquad :\implies \sf tan \: theta \: + cot \: theta \: = \dfrac{4 }{ \sqrt{3}}

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ tan \: \theta \: = \: \dfrac{sin \:\theta }{cos \theta } }\bigg\rgroup \\\\

 \qquad :\implies \sf  \:\dfrac{sin \:\theta }{cos \theta } + cot \: theta \: = \dfrac{4 }{ \sqrt{3}}

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ cot \: \theta \: = \: \dfrac{cos \:\theta }{sin \theta } }\bigg\rgroup \\\\

 \qquad :\implies \sf  \:\dfrac{sin \:\theta }{cos \theta } + \dfrac{cos \:\theta }{sin \theta } \: = \dfrac{4 }{ \sqrt{3}}

 \qquad :\implies \sf  \:\dfrac{sin^2 \:\theta + cos^2 \theta }{cos \theta sin \theta  }  \: = \dfrac{4 }{ \sqrt{3}}

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ sin^2 \theta + cos^2 \theta = 1 }\bigg\rgroup \\\\

 \qquad :\implies \sf  \:\dfrac{1 }{cos \theta sin \theta  }  \: = \dfrac{4 }{ \sqrt{3}}

By Squaring Both L.H.S & R.H.S :

 \qquad :\implies \sf  \:\dfrac{1^2 }{cos^2 \theta sin^2 \theta  } \: =\bigg( \dfrac{4 }{ \sqrt{3}}\bigg)

 \qquad :\implies \sf  \:\dfrac{1 }{cos^2 \theta sin^2 \theta  }  \: = \dfrac{16 }{ 3}

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ 1- sin^2 \theta cos^2 \theta  }\bigg\rgroup \\\\

 \qquad :\implies \sf  \:\dfrac{1 }{(1 - sin^2 \theta )  sin^2 \theta  }  \: =  \dfrac{16 }{ 3}

 \qquad :\implies \sf  \:\dfrac{1 }{ sin^2 \theta -  sin^4 \theta  }  \: =  \dfrac{16 }{ 3}

 \qquad :\implies \sf  \:16( sin^2 \theta -  sin^4 \theta )   \: =  3

 \qquad :\implies \sf  \:16 sin^2 \theta -  16sin^4 \theta    \: =  3

 \qquad :\implies \sf  \:16 sin^2 \theta -  16sin^4 \theta  +3  \: =  0

 \qquad :\implies \sf  \:  16sin^4 \theta - 12sin^2 \theta - 4sin^2\theta +3  \: =  0

 \qquad :\implies \sf  \: 4sin^2 \theta ( 4sin^2 \theta - 3) -1 (  4sin^2\theta - 3)  \: =  0

 \qquad :\implies \sf  \: ( 4sin^2 \theta - 1 )  (  4sin^2\theta - 3)  \: =  0

Therefore,

 \qquad :\implies \sf  \: 4sin^2 \theta - 1    \: =  0

 \qquad :\implies \sf  \: 4sin^2 \theta     \: =  1

 \qquad :\implies \sf  \: sin^2 \theta     \: =  \dfrac{1}{4}

 \qquad :\implies \sf  \: sin^2 \theta     \: =  \bigg(\dfrac{1}{2}\bigg)^2

 \qquad :\implies \sf  \: sin \theta     \: =  \dfrac{1}{2}

\qquad \dag\:\:\bigg\lgroup \sf{ sin 30^\circ = \dfrac{1}{2}  }\bigg\rgroup \\\\

 \qquad :\implies \bf  \: \theta     \: =  30^\circ

Either ,

 \qquad :\implies \sf  \: 4sin^2 \theta - 3 \: =  0

 \qquad :\implies \sf  \: 4sin^2 \theta     \: =  3

 \qquad :\implies \sf  \: sin^2 \theta     \: =  \dfrac{3}{4}

 \qquad :\implies \sf  \: sin^2 \theta     \: =  \bigg(\dfrac{\sqrt{3}}{2}\bigg)^2

 \qquad :\implies \sf  \: sin \theta     \: =  \dfrac{\sqrt{3}}{2}

\qquad \dag\:\:\bigg\lgroup \sf{ sin 30^\circ = \dfrac{\sqrt{3}}{2}  }\bigg\rgroup \\\\

 \qquad :\implies \bf  \: \theta     \: =  60^\circ

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Values \:of\:\theta \:[theta] \:can\:be\:\bf{30^\circ \:\& \:60^\circ}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions