Math, asked by kaul84168, 1 month ago

find the value of this ​

Attachments:

Answers

Answered by Clαrissα
15

Question :

Find the value of  \tt\sqrt{15625} . Using this evaluate :  \tt\sqrt{156.25} +  \tt\sqrt{1.5625} .

To Find :

  • The value of  \bf\sqrt{15625} and along with this, we need to evaluate  \bf\sqrt{156.25} +  \bf\sqrt{1.5625}

Solution :

Taking out the value of  \tt\sqrt{15625} by using prime factorisation method.

 \begin{array}{c | c} \sf{ \blue{ \bf \underline{5}}}&  \sf\underline{15625}  \\ \blue{\bf{ \underline{5}}} & \sf \underline{3125}   \\  \green{\pmb{\tt{ \underline{5}}}}&  \sf \underline{645} \\ \green{\pmb{\tt{ \underline{5}}}} &  \sf \underline{125} \sf  \\ \pink{\bf{ \underline{5}}}&  \sf \underline{25}&  \\  \pink{\bf{ \underline{5}}}& \sf{ \underline{5}}  \\ & \sf1\end{array}

We got the prime factors as,

 \implies \tt \: 15625 = 5 \times 5 \times 5 \times 5 \times 5 \times 5  \\ \implies \tt \: 15625 =  {5}^{2}  \times  {5}^{2} \times  {5}^{2}

We got the pairs of 5 so among them we'll take one 5 from each pair and will multiply to get the value..!

  \implies \tt \: 5  \times 5 \times 5 \\   \implies \tt \:  \tt\sqrt{15625} =  \bf \: 125

The value of  \tt\sqrt{15625} is 125.

Second part:

Now, doing the evaluation of  \bf\sqrt{156.25} +  \bf\sqrt{1.5625}

 \implies \tt  \sqrt{156.25}  +  \sqrt{1.5625} \\  \\  \implies \tt  \sqrt \dfrac{15625}{100} + \sqrt \dfrac{15625}{10000}  \\  \\ \tt  \implies \dfrac{125}{10} +  \dfrac{125}{100} \\  \\  \implies \tt 12.5 +1.25 \\  \\  \implies \large\underline{ \boxed{\pmb{ \tt{13.75}}}}

The evaluation of  \tt\sqrt{156.25} +  \tt\sqrt{1.5625} is 13.75.

Similar questions