find the value of this...
Attachments:
Answers
Answered by
1
[1+tanA] [1+tanB] = 2
1+tanB+tanA + tanA . tanB
1+1-tanA+tanB+tanA+tanB
=2
1+tanB+tanA + tanA . tanB
1+1-tanA+tanB+tanA+tanB
=2
jpatar16:
thank you
Answered by
1
A+B = π/4
tan(A+B) = tan π/4
(tanA +tanB)/1-tanAtanB=1
tanA +tanB =1- tanAtanB
tan A + tanB +tanA tan B=1
adding 1 both sides
(1+ tanA) +tanB(1+tanA) = 1+1
(1+tanA)(1+tanB)=2
tan(A+B) = tan π/4
(tanA +tanB)/1-tanAtanB=1
tanA +tanB =1- tanAtanB
tan A + tanB +tanA tan B=1
adding 1 both sides
(1+ tanA) +tanB(1+tanA) = 1+1
(1+tanA)(1+tanB)=2
Similar questions