Math, asked by Khushibrainly, 1 day ago

Find the value of this and ....
 { \sin(45) }^{2}  \times  { \cos(30) }^{2}  +  \frac{1}{2}  { \cos(90) }^{2}

Answers

Answered by Anonymous
10

Trigonometry

The following are the tips and concept that can be use to find the solution:

  • Having a basic knowledge of Trigonometric Angles.

  • Trigonometric ratios are sine, cosine, tangent, cosecant, secant, cotangent.

  • The standard angles of these trigonometric ratios are 0°, 30°, 45°, 60° and 90°.

Analyse the values of important angles for all the six trigonometric ratios shown in the table given below:

\boxed{\begin{array}{c|c|c|c|c|c}\bf x & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \sin(x) & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \cos(x) & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \tan(x) & 0 & \dfrac{1}{ \sqrt{3}} &1 & \sqrt{3} & \rm \infty \\ \\ \csc(x) & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \sec(x) & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \cot(x) & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}

Solution:

We are asked to find the exact value of the given equation:

\longrightarrow {\sin^2(45)} \times {\cos^2(30)} + \dfrac{1}{2} {\cos^2(90)}

By substituting the known values of trigonometric angles in the equation, we get the following results:

\implies \bigg(\dfrac{1}{\sqrt{2}}\bigg)^2 \times \bigg(\dfrac{\sqrt{3}}{2}\bigg)^2 + \dfrac{1}{2} \times (0)^2

\implies \dfrac{(1)^2}{(\sqrt{2})^2} \times \dfrac{(\sqrt{3})^2}{(2)^2} + \dfrac{1}{2} \times 0

\implies \dfrac{1}{2} \times \dfrac{3}{4} + \dfrac{1}{2} \times 0

\implies \dfrac{1 \times 3}{2 \times 4} + \dfrac{1}{2} \times 0

\implies \dfrac{3}{8} + \dfrac{1}{2} \times 0

\implies \dfrac{3}{8} + 0

\implies \dfrac{3}{8}

Therefore the required answer is:

\boxed{{\sin^2(45)} \times {\cos^2(30)} + \dfrac{1}{2} {\cos^2(90)} = \dfrac{3}{8}}

To read and understand some similar type of questions from this chapter, refer the below link:

brainly.in/question/48030979

Similar questions