find the value of this expression
20 + (-96) - (-99)
Answers
Answer:
20 - 96 + 99
= 110 - 96
= 14
__________________
Answer:
Step-1:
Find Unit's digit in (1)^{99}(1)
99
\implies⟹ Unit's digit in (1)^{99}(1)
99
= 1 ———[2]
\underline{\large{\textit{Step-2:}}}
Step-2:
Find Unit's digit in (2)^{98}(2)
98
Remainder when 98 divided by 4 is 2.
\implies⟹ Unit's digit in (2)^{98} = (2)^{2} = 4(2)
98
=(2)
2
=4 ———[3]
\underline{\large{\textit{Step-3:}}}
Step-3:
Find the Unit's digit in 6^{97}6
97
Remainder when 97 divided by 4 = 1
\implies⟹ Unit's digit in 6^{97}= 6^{1} = 66
97
=6
1
=6 ———[4]
\underline{\large{\textit{Step-4:}}}
Step-4:
Find the Unit's digit in 24^{96}24
96
Remainder when 96 divided by 4 = 0
24 is an Even.
\implies⟹ Unit's digit in 24^{96}= 624
96
=6 ———[5]
\underline{\large{\textit{Step-5:}}}
Step-5:
Substituting [2], [3], [4], [5] in [1]
Required Unit's digit = Unit digit(Sum of Unit's digit in [1])
\implies⟹ Required Unit's digit = Unit digit(1 + 4 + 6 + 6 + 0)
\implies⟹ Required Unit's digit = Unit's digit (17)
\implies⟹ Required Unit's digit = 7.