Math, asked by OreoMagie, 6 hours ago

Find the value of this expression:-

 \sqrt[3]{3}  \times  \sqrt[4]{3}  \times  \sqrt[12]{243}

Answers

Answered by Anonymous
22

Answer :-

 {\huge {\red {\pmb { 3}}}}

Refer the attachment for full Answer (◕દ◕)

Used Concepts :-

  •  { \red { \bf { \sqrt[n]{x^{m}} ={\bigg( x \bigg)}^{\footnotesize \dfrac{m}{n}} }}}

  •  { \red { \bf { a^{m} \times a^{n} \times a^{k}= a^{m+n+k}}}}
Attachments:
Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\sqrt[3]{3} \times \sqrt[4]{3} \times \sqrt[12]{243}

\rm \:  =  \: \sqrt[3]{3} \times \sqrt[4]{3} \times \sqrt[12]{3 \times 3 \times 3 \times 3 \times 3}

\rm \:  =  \: \sqrt[3]{3} \times \sqrt[4]{3} \times \sqrt[12]{ {3}^{5} }

We know,

 \\ \boxed{\tt{  \sqrt[n]{x} = y \: \rm\implies \:x =  {\bigg(y\bigg) }^{\dfrac{1}{n} }}} \\

So, using this, we get

\rm \:  =  \:  {\bigg(3\bigg) }^{\dfrac{1}{3} } \times  {\bigg(3\bigg) }^{\dfrac{1}{4} } \times  {\bigg(3\bigg) }^{\dfrac{5}{12} }

We know,

 \\ \boxed{\tt{  {x}^{m} \times  {x}^{n}  =  {x}^{m + n}}} \\

So, using this, we get

\rm \:  =  \:  {\bigg(3\bigg) }^{\dfrac{1}{3}  + \dfrac{1}{4}  + \dfrac{5}{12} }

\rm \:  =  \:  {\bigg(3\bigg) }^{\dfrac{4 + 3 + 5}{12}}

\rm \:  =  \:  {\bigg(3\bigg) }^{\dfrac{12}{12}}

\rm \:  =  \:  {3}^{1}

\rm \:  =  \: 3

Hence,

 \\ \rm\implies \:\boxed{\tt{ \sqrt[3]{3} \times \sqrt[4]{3} \times \sqrt[12]{243} = 3}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{  {x}^{0} = 1 \: }}

\boxed{\tt{  {x}^{m}  \div   {x}^{n}  =  {x}^{m  -  n}}}

\boxed{\tt{  {( {x}^{m}) }^{n}  \:  =  \:  {x}^{mn} }}

Similar questions