find the value of this ques.
Attachments:
Answers
Answered by
1
let [cos^(-1) 7/25]=A,
then
cosA=7/25,
then by Pythagoras theorem,
perpendicular=24,
then
cotA=7/24
then
cosA=7/25,
then by Pythagoras theorem,
perpendicular=24,
then
cotA=7/24
Answered by
0
cot(cos^-1(7/25))
take cos^-1(7/25) = S
then
cos S = 7/25..
we know That sin^2 theta + cos^2 theta = 1
sin^2 theta = 1 - cos^2 theta
sin theta = √(1 - cos^2 theta)
here theta = S..substituting 7/25
sin S = √(1 - (7/25)^2)
cos^-1(7/25) is taken as S
so cot(cos^-1(7/25)) = cot S
we know That Cos S/Sin S
= (7/25)/ √(1 - (7/25)^2)
= (7/25)/ √(1 - 49/625)
= (7/25)/ √((625-49)/625)
= (7/25)/ √((576)/625))
=(7/25)/ √((576)/625))
√576 = 24 ; √625 = 25
=(7/25)/ (24/25)
=7/24
take cos^-1(7/25) = S
then
cos S = 7/25..
we know That sin^2 theta + cos^2 theta = 1
sin^2 theta = 1 - cos^2 theta
sin theta = √(1 - cos^2 theta)
here theta = S..substituting 7/25
sin S = √(1 - (7/25)^2)
cos^-1(7/25) is taken as S
so cot(cos^-1(7/25)) = cot S
we know That Cos S/Sin S
= (7/25)/ √(1 - (7/25)^2)
= (7/25)/ √(1 - 49/625)
= (7/25)/ √((625-49)/625)
= (7/25)/ √((576)/625))
=(7/25)/ √((576)/625))
√576 = 24 ; √625 = 25
=(7/25)/ (24/25)
=7/24
Similar questions