Math, asked by raj681084, 1 year ago

find the value of trigonometry function tan 1215​

Answers

Answered by hondeashok12
17

Answer:

Tan(1215) = -1

Step-by-step explanation:

Tan(x+180 m) = tan(m)

Tan( 1215 ) = Tan( 180*6 + 135) = Tan(135)

Tan( 90+ x ) = -Cot(x)

Tan(135) = tan( 90 +45) = -Cot(45) = -1


raj681084: thanks
Answered by Swarup1998
3

To find:

The value of \mathsf{tan1215^{\circ}}

Before we solve the problem, we must clear some trigonometric concepts.

  • \mathsf{tan(180^{\circ}+\theta)=tan\theta}
  • \mathsf{tan(180^{\circ}-\theta)=-tan\theta}
  • \mathsf{tan(m\times 180^{\circ}+\theta)=tan\theta}
  • \mathsf{tan(m\times 180^{\circ}-\theta)=-tan\theta}

where \mathsf{m\in {\mathbb{Z}}^{+}} and \mathsf{\theta} is an acute angle.

Step-by-step explanation:

Now, \mathsf{tan1215^{\circ}}

\mathsf{=tan(1260^{\circ}-45^{\circ})}

\mathsf{=tan(7\times 180^{\circ}-45^{\circ})}

\mathsf{=-tan45^{\circ}}

  • using \mathsf{tan(m\times 180^{\circ}-\theta)=-tan\theta}, where \mathsf{m\in {\mathbb{Z}}^{+}} and \mathsf{\theta} is an acute angle.

\mathsf{=-1}

  • since \mathsf{tan45^{\circ}=1}

Answer: \boxed{\mathsf{tan1215^{\circ}=-1}}

Similar questions