Find the value of
Unknown angles
Attachments:
Answers
Answered by
1
Step-by-step explanation:
(2x+10)°+(2x+20)°+(x+70)° = 180° [Angle sum property of triangle]
2x+10+2x+20+x+70 = 180°
2x+2x+x+10+20+70 = 180°
5x+100 = 180°
5x = 180-100
5x = 80
x = 80/5
x = 16
(2x+10)° = 2×16+10
= 32+10
= 42°
(2x+20)° = 2×16+20
= 32+20
= 52°
(x+70)° = 16+70
= 86°
.
.
Hope it might helped u
Mark mee brainliest plz!✌️✌️❣️✌️
Answered by
6
Answer:
42°, 52°, 86°
Step-by-step explanation:
As we know, to find the sum of interior angle of polygon, we use (n-2) * 180
[n = sides]
⇒ (n-2) * 180
⇒ (3 - 2)*180
⇒ 180°
∵ all interior angles of a Δ sums 180.
⇒ (2x+10)+(2x+20)+(x+70)= 180
⇒ 5x + 100 = 180
⇒ x = 16
• (2x+10) : 2 * 16 + 10 = 42
• (2x+20) : 2 * 16 + 20 = 52
• (x+70) : 16 + 70 = 86
Similar questions