Math, asked by advicka98, 9 months ago

Find the value of x ( 0< x< π/2 ) satisfying i) cos x / cosecx+1 + cosx / cosecx - 1 =2

Answers

Answered by BrainlyPopularman
13

GIVEN :

  \bf \implies \dfrac{ \cos(x) }{cosec(x) + 1}  +  \dfrac{ \cos(x) }{cosec(x)  - 1}  = 2

TO FIND :

• Value of x (0 < x < π/2) = ?

SOLUTION :

  \bf \implies  \cos(x) \left[\dfrac{1}{cosec(x) + 1}  +  \dfrac{1}{cosec(x)  - 1} \right]= 2

  \bf \implies  \cos(x) \left[ \dfrac{cosec(x)  - 1 +cosec(x) + 1 }{cosec^{2} (x)  - 1} \right]= 2

  \bf \implies  \cos(x) \left[ \dfrac{cosec(x)  +cosec(x) }{cosec^{2} (x)  - 1} \right]= 2

  \bf \implies  \cos(x) \left[ \dfrac{2cosec(x)}{cosec^{2} (x)  - 1} \right]= 2

  \bf \implies  \cos(x) \left[ \dfrac{cosec(x)}{cosec^{2} (x)  - 1} \right]=1

  \bf \implies  \cos(x) \left[ \dfrac{cosec(x)}{ \cot^{2} (x)} \right]=1

  \bf \implies  \cos(x) \left[ \dfrac{ \dfrac{1}{ \sin(x)}}{ \dfrac{ \cos^{2} (x) }{{ \sin}^{2}(x) }} \right]=1

  \bf \implies  \cos(x) \left[ \dfrac{ \dfrac{1}{1}}{ \dfrac{ \cos^{2} (x) }{{ \sin}(x) }} \right]=1

  \bf \implies  \cos(x) \left[ \dfrac{ \sin(x) }{ \cos^{2} (x) } \right]=1

  \bf \implies \left[ \dfrac{ \sin(x) }{ \cos(x) } \right]=1

  \bf \implies  \tan(x)  =1

  \bf \implies  \tan(x)  = \tan \left( \dfrac{\pi}{4} \right)

  \bf \implies \large{ \boxed{ \bf x =  \dfrac{\pi}{4} \left(0 &lt;  x &lt; \dfrac{\pi}{2} \right)}}

Answered by sanchitachauhan241
5

{\sf{\underline{\underline{\pink{GIVEN :–}}}}}

\bf \implies \dfrac{ \cos(x) }{cosec(x) + 1} + \dfrac{ \cos(x) }{cosec(x) - 1} = 2

{\sf{\underline{\underline{\pink{TO\  FIND :–}}}}}

  • Value of x (0 < x < π/2) = ?

{\sf{\underline{\underline{\pink{SOLUTION :–}}}}}

\bf \implies \cos(x) \left[\dfrac{1}{cosec(x) + 1} + \dfrac{1}{cosec(x) - 1} \right]= 2

\bf \implies \cos(x) \left[ \dfrac{cosec(x) - 1 +cosec(x) + 1 }{cosec^{2} (x) - 1} \right]= 2

\bf \implies \cos(x) \left[ \dfrac{cosec(x) +cosec(x) }{cosec^{2} (x) - 1} \right]= 2

\bf \implies \cos(x) \left[ \dfrac{2cosec(x)}{cosec^{2} (x) - 1} \right]= 2

\bf \implies \cos(x) \left[ \dfrac{cosec(x)}{cosec^{2} (x) - 1} \right]=1

\bf \implies \cos(x) \left[ \dfrac{cosec(x)}{ \cot^{2} (x)} \right]=1

\bf \implies \cos(x) \left[ \dfrac{ \dfrac{1}{ \sin(x)}}{ \dfrac{ \cos^{2} (x) }{{ \sin}^{2}(x) }} \right]=1

\bf \implies \cos(x) \left[ \dfrac{ \dfrac{1}{1}}{ \dfrac{ \cos^{2} (x) }{{ \sin}(x) }} \right]=1

\bf \implies \cos(x) \left[ \dfrac{ \sin(x) }{ \cos^{2} (x) } \right]=1

\bf \implies \left[ \dfrac{ \sin(x) }{ \cos(x) } \right]=1

\bf \implies \tan(x) =1

\bf \implies \tan(x) = \tan \left( \dfrac{\pi}{4} \right)⟹tan(x)

\bf \implies \large{ \boxed{ \bf x = \dfrac{\pi}{4} \left(0 &lt; x &lt; \dfrac{\pi}{2} \right)}}

Similar questions