Math, asked by rohan8342, 1 year ago

find the value of x+1/x​

Attachments:

Answers

Answered by devanshi1560
4

Answer:

I HOPE IT HELPS YOU MATE

MARK ME PLEASE

Attachments:

rohan8342: the answer is wrong
rohan8342: but thanks for answering
devanshi1560: then please tell me right answer yaar
devanshi1560: thanks
Answered by Anonymous
12

\green\star\mathfrak\purple{\large{\underline{\underline{Answer:-}}}}

 \bold \red{x =  \frac{4}{3 -  \sqrt{5} } }

\purple\star\mathfrak\green{\large{\underline{\underline{By \: rationalising:-}}}}

 \implies \bold \red{x =  \frac{4}{3 -  \sqrt{5}  } \times  \frac{3  +   \sqrt{5} }{3  + \sqrt{5} }  }

 \implies \bold \red{x  =  \frac{4(3 +  \sqrt{5)} }{3 -  \sqrt{5 }  \times 3  +  \sqrt{5} } }

 \implies \bold \red{x =   \frac{12 + 4 \sqrt{5} }{3 {}^{2} -  (\sqrt{5}) {}^{2}   }  }

 \implies \bold \red{x =  \frac{12 + 4  \sqrt{5} }{9 - 5}  }

 \implies \bold \red{x =  \frac{12 + 4  \sqrt{5}  }{4} \:  \:  \:  - (1)}

\green\star\bold\orange{\large{\underline{\underline{Now,  \:  \frac{1}{x}  \: will \: be \: }}}}

 \bold \pink{ \frac{1}{x}  = \frac{4}{12 + 4 \sqrt{5} }   }

\green\star\mathfrak\blue{\large{\underline{\underline{By \: rationalising:-}}}}

 \implies \bold \pink{ \frac{1}{x} =  \frac{4}{12 + 4 \sqrt{5} }     \times  \frac{12 - 4 \sqrt{5} }{12 - 4 \sqrt{5} } }

 \implies \bold \pink{ \frac{1}{x}  =  \frac{4(12 - 4 \sqrt{5)} }{12 +4 \sqrt{5}  \times 12 - 4 \sqrt{5} }{ } }

 \implies \bold\pink { \frac{1}{x}  =  \frac{48 - 16 \sqrt{5} }{(12) {}^{2} - (4 \sqrt{5) {}^{2} }  } }

 \implies \bold \pink{ \frac{1}{x}  =  \frac{48 - 16 \sqrt{5} }{144 - 16 \times 5} }

 \implies \bold \pink{ \frac{1}{x} =  \frac{48 - 16 \sqrt{5} }{144 - 80}  }

 \implies \bold \pink{ \frac{1}{x} =  \frac{48 - 16 \sqrt{5} }{64} \:  \:  - (2)  }

\green\star\mathfrak\pink{\large{\underline{\underline{Now, According\:to\:the\: Question:-}}}}

 \bold \green{x  +  \frac{1}{x}  =  \frac{12 + 4 \sqrt{5} }{4}  +  \frac{48 - 16 \sqrt{5} }{64}  }

 \implies \bold \green{  x  + \frac{1}{x}  =  \frac{3 +  \sqrt{5} }{1}  +  \frac{12 - 4 \sqrt{5} }{16} }

 \implies \bold \green{x +  \frac{1}{x}  =  3 +  \sqrt{5}   +  \frac{3  -   \sqrt{5} }{4}  }

 \implies \bold \green{x + \frac{1}{x}  =  \frac{12 + 4 \sqrt{5}  + 3 -  \sqrt{5} }{4} }

 \red \star\implies \bold \green{x +  \frac{1}{x} =   \frac{15  + 3 \sqrt{5} }{4}  } \:  \:  \:   \red\star


rohan8342: thank you for giving this answer
Anonymous: my pleasure!
Anonymous: thank you!
Similar questions