Math, asked by shobha1211983, 1 year ago

find the value of x.​

Attachments:

Answers

Answered by Anonymous
7

Answer :-

Value of x is (C) 3.

Explanation :-

 \mathsf{ \{ x^2 + (x + 1)^2  \}^{ -  \dfrac{1}{2} }=  (x + 2)^{ - 1}  }  \\  \\

 \mathsf{ \implies \{ x^2 + (x^2 + 2(1)(x) +  1^2  \}^{ -  \dfrac{1}{2} }=  (x + 2)^{ - 1}  }  \\  \\

 \boxed{ \bf  \because {(x + y)}^{2} =   {x}^{2}  + 2xy +  {y}^{2} } \\  \\

 \mathsf{ \implies \{ x^2 + x^2 + 2x +  1  \}^{ -  \dfrac{1}{2} }=  (x + 2)^{ - 1}  }  \\  \\

 \mathsf{ \implies \{ 2x^2+ 2x +  1  \}^{ -  \dfrac{1}{2} }=  (x + 2)^{ - 1}  }  \\  \\

Squaring on both sides

 \mathsf{ \implies \{ 2x^2+ 2x +  1  \}^{ - 1}=   (x + 2)^{ - 2}} \\  \\

 \mathsf{ \implies  \dfrac{1}{\{ 2x^2+ 2x +  1  \}^{1}}=    \dfrac{1}{(x + 2)^{2}}} \\  \\

 \boxed{ \bf \because a^{ - m} =  \dfrac{1}{ {a}^{m} }} \\  \\

 \mathsf{ \implies  \dfrac{1}{2x^2+ 2x +  1} =    \dfrac{1}{(x + 2)^{2}}} \\  \\

By cross multiplication

 \mathsf{ \implies {2x^2+ 2x +  1} =    {(x + 2)^{2}}} \\  \\

 \mathsf{ \implies {2x^2+ 2x +  1} =   {x}^{2} + 2(x)(2) +  {2}^{2}  } \\  \\

 \boxed{ \bf  \because {(x + y)}^{2} =   {x}^{2}  + 2xy +  {y}^{2} } \\  \\

 \mathsf{ \implies {2x^2+ 2x +  1} =   {x}^{2} + 4x+  4  } \\  \\

 \mathsf{ \implies {2x^2+ 2x +  1} - {x}^{2}  -  4x  -  4   = 0} \\  \\

 \mathsf{ \implies x^2 - 2x  -   3 = 0} \\  \\

 \mathsf{ \implies x^2 - 3x + x  -   3 = 0} \\  \\

 \mathsf{ \implies x(x - 3)  + 1( x  -   3) = 0} \\  \\

 \mathsf{ \implies (x - 3)(x + 1) = 0} \\  \\

 \mathsf{ \implies x - 3 = 0 \ or \ x + 1= 0} \\  \\

 \mathsf{ \implies x  = 3 \ or \ x =  - 1} \\  \\

 \mathsf{ \implies x  = 3 \qquad  \{neglecting \ x =  - 1 \}} \\  \\

the value of x is (C) 3.

Answered by DhanyaDA
3

Given

( {x}^{2}  +  {(x + 1)}^{2} ) ^{ \dfrac{ - 1}{2} }  = (x + 2) ^{ - 1}

To find

The value of x

Explanation

consider

\sf {x^2+(x+1)^2}^{\dfrac{-1}{2}}=(x+2)^{-1}

squaring on both sides

 \sf \: (({x}^{2}  +  {(x + 1)}^{2} )^{ \dfrac{ - 1}{2} } ) ^{2}  = ( {(x + 2)}^{ - 1} ) ^{2}

we know that

 \boxed {\bf \:   {({a}^{m}) } ^{n}  =  {a}^{mn} }

 \sf \: ( {x}^{2}   +  {(x  + 1)}^{2} ) ^{ - 1}  =  {(x + 2)}^{ - 2}

  \boxed{ \bf \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} } }

 \sf \: =  >   \dfrac{1}{ {x}^{2} +  {(x + 1)}^{2}  }  =  \dfrac{1}{ {(x + 2)}^{2} }

 \boxed{ \bf \:  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}

 \sf \:  \dfrac{1}{{x}^{2}  +  {x}^{2}  + 1 + 2x}  =  \dfrac{1}{ {x}^{2} + 4 + 4x }  \\  \\  =  >  \sf \:  \dfrac{1}{2 {x}^{2}  + 2x + 1}  =  \dfrac{1}{ {x}^{2} + 4x + 4 }

Cross multiplying

 =  >  \sf  {x}^{2}  + 4x + 4 = 2 {x}^{2} + 2x + 1  \\  \\  \sf \:  =  >  {x}^{2}  - 2x - 3 = 0

splitting the middle term

 \sf \:  =  > {x}^{2}  - 3x  + x - 3 = 0 \\  \\  \sf  =  > x(x - 3) + 1(x - 3) = 0

 \sf \:  =  > (x - 3)(x + 1) = 0

 \sf \: x =  - 1 \: and \: x = 3

ignoring x=-1

 \boxed{  \huge  \sf \: x = 3}

More formulas

➡In an quadratic equation

if the roots are not real

then,

\bullet \sf x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}

 \sf Product\: of\: roots =\dfrac{constant \:term}{coefficient\:of\: x^2}

\sf sum \:of \:roots =\dfrac{-coefficient \:of \:x}{coefficient\: of \:x^2}

Similar questions