Math, asked by bitkum024, 1 year ago

find the value of x​

Attachments:

Answers

Answered by Brâiñlynêha
3

\huge\mathbb{SOLUTION:-}

\bold{Given:-}\begin{cases}\sf{A\: quadrilateral\:in\: which}\\ \sf{ \angle DAB=75{}^{\circ}}\\ \sf{Exterior\:angles =85{}^{\circ}\:\:and\:105{}^{\circ}}\end{cases}

\huge\sf{\red{To\:Find:-}}

  • We have to find the value of x

\bf\underline{\underline{According\:To\: Question:-}}

  • First find the two interior angles of quadrilateral

\sf \angle ABC=180{}^{\circ}-85{}^{\circ}\:\:(Linear\: pair)\\ \\ \sf\implies \angle ABC=95{}^{\circ}

\boxed{\tt{\purple{ \angle ABC=95{}^{\circ}}}}

  • Now find the value of angle DCB

\sf \implies \angle BCD=180{}^{\circ}-110{}^{\circ}\:\:(Linear\: pair)\\ \\ \sf\implies \angle BCD=70{}^{\circ}

\boxed{\tt{\purple{ \angle BCD=70{}^{\circ}}}}

  • Now the value of x

  • First find angle ADC

\boxed{\rm{\red{ \angle ADC+\angle DAB+\angle ABC+\angle BCD=360{}^{\circ}}}}

\sf\implies \angle ADC=360{}^{\circ}-75{}^{\circ}-95{}^{\circ}-70{}^{\circ}\\ \\ \sf\implies \angle ADC=360{}^{\circ}-240{}^{\circ}\\ \\ \sf\implies \angle ADC=120{}^{\circ}

\boxed{\tt{\purple{\angle ADC=120{}^{\circ}}}}

  • Now the value of x

\sf\implies \angle ADC+x=180{}^{\circ}\:\:\: (Lines\:pair)\\ \\ \sf\implies 120{}^{\circ}+x=180{}^{\circ}\\ \\ \sf\implies x=180{}^{\circ}-120{}^{\circ}\\ \\ \sf\implies \angle ADC=60{}^{\circ}

\huge\underline{\boxed{\mathfrak{\star{x=60{}^{\circ}}}}}

#BAL

#answerwithquality

Similar questions