find the value of x?
16 8 x
3 =(3 )(3 )
Answers
Answer
Multiply by 112 both sides
7(3x+1)+16(2x-3)=14(x+3 )+8(3x-1)
Or 21x+7+32x-48=14x+42+24x-8
Or 21x+32x-14x-24x=42-8-7+48
Or 15x=75
Or x=5
Step-by-step explanation:
This is the correct answer
Make the answer brilliant
Follow me
Answer:
Given that:
(a + b + c)² = 32
ab + bc + ca = 10
To find:
a² + b² + c²
Solution:
ATQ:
\sf \Longrightarrow (a + b + c)^2 = 32⟹(a+b+c)
2
=32
| We know that:
| (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
\sf \Longrightarrow a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = 32⟹a
2
+b
2
+c
2
+2ab+2bc+2ac=32
Taking 2 as a common term from 2ab, 2bc & 2ac we get:
\sf \Longrightarrow a^2 + b^2 + c^2 + 2(ab + bc + ac) = 32⟹a
2
+b
2
+c
2
+2(ab+bc+ac)=32
| ATQ:
| ab + bc + ca = 10
| Substitute this value above.
\sf \Longrightarrow a^2 + b^2 + c^2 + 2(10) = 32⟹a
2
+b
2
+c
2
+2(10)=32
\sf \Longrightarrow a^2 + b^2 + c^2 + 20 = 32⟹a
2
+b
2
+c
2
+20=32
\sf \Longrightarrow a^2 + b^2 + c^2 = 32 - 20⟹a
2
+b
2
+c
2
=32−20
\sf \Longrightarrow a^2 + b^2 + c^2 = 12⟹a
2
+b
2
+c
2
=12
Final answer: 12