Math, asked by sehersjd, 10 months ago

find the value of x ​

Attachments:

Answers

Answered by Anonymous
2

Solution :

 \implies \sf \dfrac{{5}^{3x} \times 25}{ {5}^{x}} =  {5}^{3} \times 125 \\  \\ \implies \sf \dfrac{{5}^{3x} \times  {5}^{2} }{ {5}^{x}} = {5}^{3} \times  {5}^{3} \\\\\implies \sf  {5}^{3x -x} \times  {5}^{2}   =  {5}^{3 + 3} \\  \\\implies \sf {5}^{2x} \times  {5}^{2}  =  {5}^{6} \\  \\  \implies \sf{5}^{2x + 2} =  {5}^{6} \\  \\\implies \sf 2x + 2 = 6 \\  \\\implies \sf 2x = 4 \\  \\ \large\implies \boxed{ \sf \purple{ x = 2}}

IdentitY Used :

\large \sf \frac{ {m}^{a} }{ {m}^{b} }\implies {m}^{a - b} \\ \\\large \sf{m}^{a} \times  {m}^{b}\implies {m}^{a + b} \\ \\\large \sf{m}^{a} =  {m}^{b} \implies a = b

Answered by Anonymous
1

 \huge  \purple{ \boxed{ \pink{  \: \:  \:  \:  \:  \:  \: answer \:  \:  \:  \:  \:  \: }}}

Attachments:
Similar questions