Math, asked by parthrastogi7795, 8 months ago

find the value of x^2+1/x^2 if x-1/x=√3 fast its urgent!!!

Answers

Answered by Hauwautaheerusman
1

Answer:

I think the answer is 5

please mark as brainliest

Step-by-step explanation:

Answered by ItzAditt007
1

AnswEr:-

Your Answer Is 5.

ExplanaTion:-

Given:-

\tt\longrightarrow x -  \dfrac{1}{x}  =  \sqrt{3} .

To Find:-

The value of,

\tt\longrightarrow {x}^{2}  +  \dfrac{1}{ {x}^{2} }.

ID used:-

\tt\longrightarrow(a - b) {}^{2} =  {a}^{2}   +  {b}^{2}  - 2ab.

So Here,

It Is given that:-

\tt\mapsto x -  \dfrac{1}{x} =  \sqrt{3}  . \\  \\ \tt\mapsto(x -  \frac{1}{x} ) {}^{2}  = ( \sqrt{3} ) {}^{2}  . \\  \\ \rm(squaring \:  \: both \:  \: sides). \\  \\ \tt\mapsto ({x})^{2}  + ( \frac{1}{x } ) {}^{2}  - 2 \times \cancel{x} \times  \frac{1}{\cancel{x}}  = ( \sqrt{3}  \times  \sqrt{3} ). \\  \\ \rm(by \:  \: using \:  \: the \:  \: abov e \:  \: id)\\  \\ \tt\mapsto {x}^{2} +  \frac{1}{ {x}^{2} }    - 2 = 3.\\  \\\tt\mapsto {x}^{2}  +  \frac{1}{x} = 3 + 2.  \\  \\  \tt\mapsto\fbox{\underline{\underline{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 5.}}}

\therefore Your Answer Is 5.

Similar questions