Math, asked by tamaichekarvedant, 3 months ago

Find the value of x^(2)+(1)/(x^(2)) if x-(1)/(x)=sqrt(3) .​

Answers

Answered by ItzMeMukku
34

Hey mate!

_______________________

Given :

x = 2 - \sqrt{3}

To find :

(x - \frac{1}{x} ) {}^{3}

Solution :

\begin{gathered}x = 2 - \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 - \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 + \sqrt{3} \end{gathered}

Now,

\begin{gathered}x - \frac{1}{x} = 2 - \sqrt{3} - 2 - \sqrt{3} \\ \\ x - \frac{1}{x} = - 2\sqrt{3} \end{gathered}

And,

\begin{gathered}(x - \frac{1}{x} ) {}^{3} \\ \\ - (2 \sqrt{3} ) {}^{3} \\ \\ \therefore \boxed {\bold{- 24 \sqrt{3}}}\end{gathered}

_______________________

Thanks for the question !

☺️☺️☺️

Similar questions