Math, asked by rayaluaditya645, 13 hours ago

find the value of x (2) 5) -³×(2/5) ^18=(2/5)^10x​ pl

Answers

Answered by dhanajiyadav111
1

Step-by-step explanation:

I hope you understand this ans

Attachments:
Answered by pulakmath007
1

SOLUTION

TO DETERMINE

The value of x when

\displaystyle \sf{ { \bigg(  \frac{2}{5} \bigg)}^{ - 3} \times  { \bigg(  \frac{2}{5} \bigg)}^{18} = { \bigg(  \frac{2}{5} \bigg)}^{ 10x}}

CONCEPT TO BE IMPLEMENTED

We are aware of the formula on indices that :

 \sf{1. \:  \:  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

 \displaystyle \sf{2. \:  \:  \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

 \displaystyle \sf{3. \:  \:  \:  { ({a}^{m} )}^{n} =  {a}^{mn}  }

 \displaystyle \sf{4. \:  \:  {a}^{0}  = 1}

EVALUATION

Here the given equation is

\displaystyle \sf{ { \bigg(  \frac{2}{5} \bigg)}^{ - 3} \times  { \bigg(  \frac{2}{5} \bigg)}^{18} = { \bigg(  \frac{2}{5} \bigg)}^{ 10x}}

We simplify it as below

\displaystyle \sf{ { \bigg(  \frac{2}{5} \bigg)}^{ - 3} \times  { \bigg(  \frac{2}{5} \bigg)}^{18} = { \bigg(  \frac{2}{5} \bigg)}^{ 10x}}

\displaystyle \sf{ \implies { \bigg(  \frac{2}{5} \bigg)}^{ - 3 + 18}  = { \bigg(  \frac{2}{5} \bigg)}^{ 10x}}

\displaystyle \sf{ \implies { \bigg(  \frac{2}{5} \bigg)}^{ 15}  = { \bigg(  \frac{2}{5} \bigg)}^{ 10x}}

\displaystyle \sf{ \implies { \bigg(  \frac{2}{5} \bigg)}^{ 10x}  = { \bigg(  \frac{2}{5} \bigg)}^{ 15}}

\displaystyle \sf{ \implies 10x = 15}

\displaystyle \sf{ \implies x =  \frac{15}{10} }

\displaystyle \sf{ \implies x =  \frac{3}{2} }

FINAL ANSWER

Hence the required solution is

\displaystyle \sf{ x =  \frac{3}{2} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x

https://brainly.in/question/14155738

Similar questions