find the value of x
Answers
Answer:
Basic Rules used in this problem:
→ logₐ(a) = 1
→ logₐ(x/y) = logₐ(x) - logₐ(y)
→ logₐ(xⁿ) = n × logₐ(x)
Given:
Hence x = (-7/4)
Answer:
Answer:
Basic Rules used in this problem:
→ logₐ(a) = 1
→ logₐ(x/y) = logₐ(x) - logₐ(y)
→ logₐ(xⁿ) = n × logₐ(x)
Given:
\implies log_{5}\:(\dfrac{4\sqrt{25}}{625})⟹log
5
(
625
4
25
)
\begin{gathered}\implies log_5\: ( \dfrac{25^{1/4}}{625})\\\\\\\text{Using Rule No. 2 we get:}\\\\\\\implies log_5\: (25)^{1/4} - log_5\: 625\\\\\\\implies log_5\: (5^2)^{1/4} - log_5\:(5)^4\\\\\\\text{Using Rule No. 3, we get:}\\\\\\\implies \dfrac{2}{4}\times log_5\:(5) - 4 \times log_5\:(5)\\\\\\\text{ Using Rule No. 1 we get:}\\\\\\\implies \dfrac{2}{4} \times 1 - 4 \times 1\\\\\\\implies \dfrac{1}{2} - 4 \:\: \implies \dfrac{ 1-8}{4}\\\\\\\implies \boxed{\dfrac{-7}{4}}\end{gathered}
⟹log
5
(
625
25
1/4
)
Using Rule No. 2 we get:
⟹log
5
(25)
1/4
−log
5
625
⟹log
5
(5
2
)
1/4
−log
5
(5)
4
Using Rule No. 3, we get:
⟹
4
2
×log
5
(5)−4×log
5
(5)
Using Rule No. 1 we get:
⟹
4
2
×1−4×1
⟹
2
1
−4⟹
4
1−8
⟹
4
−7
Hence x = (-7/4)
Step-by-step explanation:
mark as BRAINLEST ANSWER please please please