Math, asked by gis0786, 8 months ago

Find the value of x.​

Attachments:

Answers

Answered by deepanshu3974
4

2x+60+3x-40=180 ( linear pair )

5x+20=180

5x=180-20

5x=160

x=160/5

x=32

Answered by Anonymous
4

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow \angle POR = (2x+60)\degree

\sf\dashrightarrow \angle QOR = (3x-40)\degree

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow the\:value\:of\:x.

\large\underline\bold{SOLUTION,}

\therefore by\:angle\:sum\:property,

\dashrightarrow \angle POR +\angle QOR =180\degree

\implies (2x+60)\degree +(3x-40)\degree= 180\degree

\implies 2x+60+3x-40 =180\degree

\implies  2x+3x+60-40=180\degree

\implies 5x+20=180\degree

\implies 5x=180-20

\implies 5x=160

\implies x= \dfrac{160}{5}

\implies x= \cancel \dfrac{160}{5}

\implies x= 32\degree

\large{\boxed{\bf{\star\:\: x= 32\degree\:\: \star }}}

\large\underline\bold{OPTION:-D,\:IS\:CORRECT\:OPTION.}

\therefore \angle POR = 2x+60 \\ \implies \:2(32)+60 \\ \implies 64+60\\ \implies 124\degree

\therefore \angle QOR = 3x-40 \\ \implies 3(32)-40 \\ \implies 96-40 \\ \implies 56\degree

________________

Similar questions