Math, asked by rakhikatlana, 8 months ago

find the value of x^3-1/x^3 if x+1/x=√29
(using the appropriate identities)​

Answers

Answered by amankumaraman11
1

Given,

 \boxed{  \huge\bf{x +  \frac{1}{x}  =  \sqrt{29} }}

We have,

  • To Figure Out the value of x^3-(1/x^3)

Here,

  • We need to know the value of x^2 + (1/x^2) {first}
  • Then, Value of x - (1/x) has to be founded
  • At last, using x - 1/x, we can find the value of x^3 - (1/x^3)

So,

 \to \:  \rm{}x +  \frac{1}{x}  =   \sqrt{29}  \\  \\   \boxed{ \sf{}squaring \:  \: on \:  \: both \:  \: sides} \\  \\ \to \rm { \bigg(x +  \frac{1}{x} \bigg )}^{2}    =  {( \sqrt{29} )}^{2}  \\  \\  \to \rm {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2   \bigg (\cancel{x}\bigg ) \bigg ( \frac{1}{ \cancel{x}}  \bigg ) = 29\\  \\ \to \rm  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 29 \\  \\  \rm \to {x}^{2}  +  \frac{1}{ {x}^{2} }  \:  \:  = 29 - 2  \:  \: =  \green{27}

Then,

 \to \:  \rm{}x -  \frac{1}{x}  \:   \:  \: \: \to  {\bigg( {x}^{}   -  \frac{1}{x}  \bigg)}^{2}  \\  \\  \to \rm {(x)}^{2}  + {\bigg( \frac{1}{x}\bigg )}^{2}  - 2\bigg(x\bigg)\bigg( \frac{1}{x} \bigg)  \\  \\  \rm \to \:  {x}^{2}    +   \frac{1}{ {x}^{2} }  - 2  \\  \\  \to \sf \:  \: 27 - 2  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tiny \{ \bf using \:  \: the \:  \: obtained \:  \: value \} \\  \to \sf \:  \:  {25} \\  \\ \therefore  \:   \:  \: \rm x  -  \frac{1}{x}   =  \sqrt{25}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tiny \{ \bf  \because 25  =  {\big(x +  \frac{1}{x}  \big)}^{2}   \} \\  \\  \implies \rm x  -  \frac{1}{x}    =  \pink{ \sf{5}}

Now,

 \large \implies \rm \bigg(x  -   \frac{1}{x} \bigg ) =  5  \\   \\ \boxed {\tt{cubing \:  \: on \:  \: both \:  \: sides}  }\\  \\  \to \rm {(x)}^{3}   -   \frac{1}{ {( x )}^{3} }  - 3 \bigg(\cancel{x} \bigg)\bigg(  \frac{1}{\cancel{x}} \bigg)\bigg[x -  \frac{1}{ {x}} \bigg] =   {( \sqrt{29} )}^{3}  \\  \\  \to \sf {x}^{3}   -  \frac{1}{ {x}^{3} }  - 3\big[5\big] = 29 \sqrt{29}  \\  \\  \to \sf{x}^{3}   -  \frac{1}{ {x}^{3} } - 15 = 29 \sqrt{29}  \\  \\ \to  \:  \boxed{ \: \bf {x}^{3}   -  \frac{1}{ {x}^{3} } \:  \:  = \red{ 29 \sqrt{29}  + 15} \: }

Thus,

  • We have obtained the required value of  \sf {x}^{3}   -  \frac{1}{ {x}^{3} } as  \red{\sf{29 \sqrt{29}  + 15}} .
Similar questions