Math, asked by harshit22mishra, 3 months ago

Find the value of x:(3/5)^2*(5/3)^2x=(125/27)

Answers

Answered by IntrovertLeo
6

Given:

The equation:-

\bf \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} = \dfrac{125}{27}

What To Find:

We have to find the value of x.

How To Find:

To find the value of x,

  • Make the same bases on both sides.
  • Form an equation for the exponents.

Solution:

  • Making the bases the same.

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} = \dfrac{125}{27}

125 can be written as 5³,

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} = \dfrac{5^3}{27}

27 can be written as 3³,

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} = \dfrac{5^3}{3^3}

Also written as,

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} =  \bigg( \dfrac{5}{3}  \bigg) ^3

Using \sf a^{-n} = \dfrac{1}{a^{n}},

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} =  \bigg( \dfrac{3}{5}  \bigg) ^{-3}

Now the bases are the same.

  • Solving the exponents.

⇒ 2 + 2x = -3

Take 2 to RHS,

⇒ 2x = -3 - 2

Subtract them,

⇒ 2x = -5

Take 2 to RHS,

\sf \Rightarrow x = \dfrac{-5}{2}

Divide them,

⇒ x = -2.5

∴ Hence, the value of x is -2.5.

Answered by tejas9193
21

Given:

The equation:-

\bf \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} = \dfrac{125}{27}

What To Find:

We have to find the value of x.

How To Find:

To find the value of x,

Make the same bases on both sides.

Form an equation for the exponents.

Solution:

●Making the bases the same.

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} = \dfrac{125}{27}

125 can be written as 5³,

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} = \dfrac{5^3}{27}

27 can be written as 3³,

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} = \dfrac{5^3}{3^3}

Also written as,

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} =  \bigg( \dfrac{5}{3}  \bigg) ^3

Using \sf a^{-n} = \dfrac{1}{a^{n}},

\sf \Rightarrow \bigg( \dfrac{3}{5} \bigg)^2 \times \bigg( \dfrac{3}{5} \bigg)^{2x} =  \bigg( \dfrac{3}{5}  \bigg) ^{-3}

Now the bases are the same.

Solving the exponents.

⇒ 2 + 2x = -3

Take 2 to RHS,

⇒ 2x = -3 - 2

Subtract them,

⇒ 2x = -5

Take 2 to RHS,

\sf \Rightarrow x = \dfrac{-5}{2}

Divide them,

⇒ x = -2.5

∴ Hence, the value of x is -2.5.

Similar questions