Math, asked by pgidde003, 1 month ago

Find the value of x^3-8x^2+14x-7, when x = -1​

Answers

Answered by Kitsch
3

Rules Used :-

# Two negatives when multiplied always makes a positive sign.

# A positive and a negative when multiplied always makes negative sign.

# Two negatives always makes positive with a negative sign.

Attachments:
Answered by mathdude500
5

Answer:

\boxed{ \sf{ \:The \: value \: of{x}^{3} -  {8x}^{2} + 14x - 7  \: at \: x =  - 1 \: is \:  \bf \:  - 30 \: }}\\  \\

Step-by-step explanation:

Given polynomial is

\qquad\sf \: {x}^{3} -  {8x}^{2} + 14x - 7 \\  \\

Now, Substitute x = - 1, we get

\qquad\sf \:  =  \: {( - 1)}^{3} -  {8( - 1)}^{2} + 14( - 1) - 7 \\  \\

\qquad\sf \:  =  \:  - 1 -  8(1) -  14 - 7 \\  \\

\qquad\sf \:  =  \:  - 1 -  8 -  21 \\  \\

\qquad\sf \:  =  \:  - 30 \\  \\

Hence,

\sf\implies  The \: value \: of{x}^{3} -  {8x}^{2} + 14x - 7  \: at \: x =  - 1 \: is \:  \bf \:  - 30\\  \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions