Math, asked by dibya6738, 4 months ago

Find the value of x. ​

Attachments:

Answers

Answered by misbahkadri
1

Answer:

Step-by-step explanation:

We know that,

according to the angle sum property, the angles of a triangle are supplementary.

angleA+angleB+angleC=180 degrees

x + 70 + 65 =180

x + 135=180

x = 45 degrees

pl mark as brainliest

Answered by Yuseong
5

Given Information:

• Measures of the interior angles :

 \sf{ \longrightarrow \:  \angle \: A = x} \\  \\   \sf{ \longrightarrow \:  \angle \: B =   {70}^{ \circ} }  \\  \\ \sf{ \longrightarrow \:  \angle \:  C =   {65}^{ \circ} }

Solution:

We have to calculate the measure of angle A or value of x. So, here we can find the value of x by forming a suitable equation.As we know that, sum of the interior angles of the triangle is equal to 180°. So,

 \sf{ \longrightarrow \:  \angle \: A  + \angle \: B + \angle \:  C ={180}^{ \circ} } \\  \\   \\  \sf{ \longrightarrow \: x + {70}^{ \circ} + { 65}^{ \circ} ={180}^{ \circ}   }   \\  \\ \\  \sf{ \longrightarrow \:   x +  { 135}^{ \circ} ={180}^{ \circ}  } \\  \\  \\ \sf{ \longrightarrow \:   x  ={180}^{ \circ}   -  { 135}^{ \circ} } \\  \\  \\  \longrightarrow \:  \underline{ \boxed{ \sf{x ={ 45}^{ \circ}  }}} \:  \red{ \bigstar}

Henceforth, value of x is 45°.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \sf Verification} \\  \\  \sf{ \longrightarrow\angle A + \angle B + \angle C = {180}^{\circ} } \\  \\  \\ \sf{ \longrightarrow \:{45}^{\circ}  + {70}^{\circ}  +  {65}^{\circ}= {180}^{\circ} } \\  \\  \\ \sf{ \longrightarrow \:{180}^{\circ}  = {180}^{\circ} } \\  \\

Hence, verified!!

_____________________________

More Information :

Important properties of triangle :

Angle sum property of a triangle :

  • Sum of interior angles of a triangle = 180°

Exterior angle property of a triangle :

  • Sum of two interior opposite angles = Exterior angle

Perimeter of triangle :

  • Sum of all sides

Area of triangle :

  • \sf { \dfrac{1}{2} \times Base \times Height }

Area of an equilateral triangle:

  • \sf { \dfrac{\sqrt{3}}{4} \times  {Side}^{2} }

Area of a triangle when its sides are given :

  •  \sf { \sqrt{s[ (s-a)(s-b)(s-c) ]} }

Where,

S= Semi-perimeter or  \sf {\dfrac{a+b+c}{2} }

Similar questions