Math, asked by akshitasomani6337, 11 months ago

Find the value of x^4 +1÷x^4 if x=7+4√3

Answers

Answered by BrainlyQueen01
10

Answer:

x⁴ + 1/x⁴ = 37634

Step-by-step explanation:

Given :

  • \tt x = 7 + 4 \sqrt{3}

 \tt \implies  \frac{1}{x}  =  \frac{1}{7 +  4\sqrt{3} }  \\  \\  \tt \implies  \frac{1}{x}  =  \frac{1}{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  \\  \tt \implies  \frac{1}{x}  =  \frac{7 - 4 \sqrt{3} }{(7)^{2}  -  (4 \sqrt{3}) ^{2} }  \\  \\  \tt \implies  \frac{1}{x}  =  \frac{7 - 4 \sqrt{3} }{49 - 48}  \\  \\  \tt \implies  \frac{1}{x}  =   \frac{7 - 4 \sqrt{3} }{1}  \\  \\  \tt \implies  \frac{1}{x}  = 7 - 4 \sqrt{3}

Now, adding both :

 \tt x +  \frac{1}{x}  = 7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}  \\  \\  \tt \implies  x + \frac{1}{x}  = 7 + 7 \\  \\  \tt \implies  x + \frac{1}{x}  = 14

On squaring both sides,

 \tt \implies  (x + \frac{1}{x}) {}^{2}   = (14) {}^{2}  \\  \\  \tt \implies  x {}^{2}  + \frac{1}{x {}^{2} }   + 2.x. \frac{1}{x} = 196 \\  \\  \tt \implies  x {}^{2}  + \frac{1}{x {}^{2} } + 2 = 196 \\  \\ \tt \implies  x {}^{2}  + \frac{1}{x {}^{2} } = 196 - 2 \\  \\ \tt \implies  x {}^{2}  + \frac{1}{x {}^{2} } = 194

Again, on squaring both sides.

\tt \implies ( x {}^{2}  + \frac{1}{x {}^{2} }) {}^{2}  = (194) {}^{2}  \\  \\  \tt \implies x {}^{4}  +  \frac{1}{x {}^{4} }  + 2.x {}^{2}. \frac{1}{x {}^{2} }   = 37636 \\  \\  \tt \implies x {}^{4}  +  \frac{1}{x {}^{4} } + 2 = 37636\\  \\ \tt \implies x {}^{4}  +  \frac{1}{x {}^{4} } = 37636 - 2 \\  \\ \therefore \boxed{ \bf \red{ x {}^{4}  +  \frac{1}{x {}^{4} } = 37634}}

Answered by Anonymous
0

HELLO MATE YOUR ANSWER IS⬇️

➡️x⁴ + 1/x⁴ = 37634⬅️

Similar questions