Math, asked by loneayash2154, 5 hours ago

Find the value of x^4+1/x^4 , when x-1/x=4

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x - \dfrac{1}{x} = 4

On squaring both sides, we get

\rm :\longmapsto\: {\bigg[x - \dfrac{1}{x} \bigg]}^{2} =  {4}^{2}

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } - 2 \times x \times \dfrac{1}{x} = 16

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } - 2  = 16

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  = 16 + 2

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  = 18

On squaring both sides, we get

\rm :\longmapsto\: {\bigg[ {x}^{2} +  \dfrac{1}{ {x}^{2} } \bigg]}^{2} =  {18}^{2}

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} } + 2 \times  {x}^{2} \times \dfrac{1}{ {x}^{2} }  = 324

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} } + 2  = 324

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} }  = 324 - 2

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} }  = 322

Hence,

 \purple{\rm :\longmapsto\: \boxed{\tt{  \: {x}^{4} + \dfrac{1}{ {x}^{4} }  = 322}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

 \red{\rm :\longmapsto\:\boxed{\tt{ \:   {(x - y)}^{2} =  {x}^{2}  - 2xy +  {y}^{2} \: }}}

 \red{\rm :\longmapsto\:\boxed{\tt{ \:   {(x + y)}^{2} =  {x}^{2}  +  2xy +  {y}^{2} \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to Know

 \pink{\rm :\longmapsto\:\boxed{\tt{ \:   {(x + y)}^{3} =  {x}^{3}  +  3xy(x + y) +  {y}^{3} \: }}}

 \pink{\rm :\longmapsto\:\boxed{\tt{ \:   {(x  -  y)}^{3} =  {x}^{3}  -  3xy(x  -  y)  - {y}^{3} \: }}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \:  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2}) \: }}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \:  {(x + y)}^{2} -  {(x - y)}^{2} = 4xy \: }}}

Similar questions