Math, asked by prasanthisingh, 1 year ago

find the value of x :- 5^2x-1 - 25^x-1 = 2500

Answers

Answered by kvnmurty
601
The correct problem is given here. there is no leading - in the beginning.

 + 5^{2x-1} - 25^{x-1} = 2500 \\ \\  + 5^{2x-1} - 5^{2x-2} = 5^2 * 25 * 4 \\ \\  + 5^{2x-1} [1 - 5^{-1}] = 5^4 * 2^2 \\ \\ 5^{(2x-1)} \frac{4}{5} = 5^4 2^2 \\ \\ 5^{2x-1} = 5^5 \\ 2x -1 = 5 \\ x = 3 \\
Answered by BrainlyQueen01
315

Answer :


x = 3


Step-by-step explanation :


5^{(2x - 1)} -25^{x - 1}=2500\\\\ 5^{(2x - 1)} -5^{2(x - 1)}=5^2 * 5^2 * 2^2\\\\ 5^{(2x - 1)} -5^{2x - 2}=5^4 * 2^2\\\\ 5^{(2x - 1)} [ 1 - 5^{- 1}] = 5^4 * 2^2\\\\5^{(2x - 1)} [ 1 - \frac{1}{5} ] = 5^4 * 2^2\\\\5^{(2x - 1)} ( \frac{4 }{5}) = 5^4 * 2^2\\\\ 5^{(2x - 1)} = 5^5


On comparing both the sides ;


2x - 1 = 5


⇒ 2x = 5 + 1


⇒ 2x = 6


⇒ x = 3


Hence, the value of x is 3.

Similar questions