Math, asked by ranjuranju3617, 3 months ago

Find the value of x :(-5)^x+1 X (-5)^5 = (-5)^7​

Answers

Answered by meenapreeti9069
5

the value of x will be 1

plz check the answer

Attachments:
Answered by MrImpeccable
1

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  •  (-5)^{x+1} \times (-5)^5 = (-5)^7

To Find:

  • Value of x

Solution:

 \implies (-5)^{x+1} \times (-5)^5 = (-5)^7 \\ \implies (-5)^{x+1+5} = (-5)^7 \\ \implies (-5)^{x+6} = (-5)^7 \\ Comparing\:the\:powers,\\ \implies x+6 = 7 \\ \bold{\implies x = 1} \\

Formula Used:

  •  a^m \times a^n = a^{m+n}

Learn More:

 \begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions