Math, asked by milivansh7727, 11 months ago

Find the value of x +9,x-6,4 are the three terms of a geometrical progression and calculate the fourth term of progression in each case

Answers

Answered by mansurijishan805
0

Step-by-step explanation:

t1 = x + 9 \:  \:  \:  \: t2 = x - 6 \: \: t3 = 4  \\ in \: g.p. \\  \\  \frac{t2}{t1}  =  \frac{t3}{t2}  \\   \frac{(x - 6)}{(x + 9)}  =  \frac{4}{(x - 6)}  \\  {(x - 6)}^{2}  = 4(x + 9) \\  {x }^{2}  - 12x + 36 = 4x + 36 \\  {x}^{2}  - 12x - 4x = 36 - 36 \\  {x}^{2}  - 16x = 0 \\  {x}^{2}  = 16x \\ devide \: by \: x \: both \: sides \:  \\   \frac{ {x}^{2} }{x}  =  \frac{16x}{x}  \\ x = 16

geometric progression is 25,10,4

Tn=ar^(n-1)

a=25, r=0.4=4\10

t4 = 25 \times ( { \frac{4}{10}) }^{(4 - 1)} \\  = 25 \times  { (\frac{4}{10}) }^{3}  \\  = 25 \times  \frac{64}{1000}  \\  =  \frac{1600}{1000}  \\ t4 = 1.6

Similar questions