Find the value of (x+a)^3+(x-b)^3+(x-c)^3-(x-a)(x-b)(x-c) where a+b+c=3x
Answers
Answered by
2
Answer:
Answer = 0
Step-by-step explanation:
We know that,
a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
If a+b+c=0 then,
a³+b³+c³-3abc=0×(a²+b²+c²-ab-bc-ca)=0 .....(1)
(x-a)³+(x-b)³+(x-c)³-3(x-a)(x-b)(x-c)
let a=(x-a)
b=(x-b)
and
c=(x-c)
a+b+c=x-a+x-b+x-c=3x-(a+b+c)=3x-3x=0....(as a+b+c=3x)
(x-a)³+(x-b)³+(x-c)³-3(x-a)(x-b)(x-c)=0
Thus the answer is 0.
Similar questions