Math, asked by Anonymous, 3 months ago

Find the value of (x - a)³ + (x - b)³ + (x - c)³ - (x - a)(x - b)(x-c) where a + b + c = 3x

Answers

Answered by ItzBrainlyQueen01
116

Step-by-step explanation:

{\Large{\mathbf{\purple{Proper  \: Question  \: :}}}} \\

Find the value of (x - a)³ + (x - b)³ + (x - c)³ - 3(x - a)(x - b)(x-c) where a + b + c = 3x

{\Large{\mathbf{\purple{Solution \: :}}}} \\

✰ \:  \:  \:  \: {\bold{\mathrm{\underline{We  \: know  \: that,}}}} \\

➠ a ³ + b³ + c³ - 3abc = (a + b + c) (a² + b² + c² - ab - ac - bc)

➠ If (a + b + c) = 0 then,

➠ a³ + b³ + c³ = 3abc

Here,

● \:  \:  \:  \:  \:  \: {\bold{\sf{\orange{a  \:  =  \: x \:  -  \: a}}}} \\

● \:  \:  \:  \:  \:  \: {\bold{\sf{\orange{b  \: =  \: x \:  - \:  b}}}} \\

● \:  \:  \:  \:  \:  \: {\bold{\sf{\orange{c \:  = \:  x  \: -  \: c}}}} \\

Putting the values,

{\bold{\mathsf{⟼ \:  \:  \:  \:   \: \: a  \: + \:  b \:  +  \: c  \: = \:  x \:  - \:  a  \: +  \: x \:  -  \: b  \: +  \: x \:  -  \: c}}} \\  \\

{\bold{\mathsf{⟼   \:  \:  \:  \: \:  \: 3x \:  - \:  (a \:  + \:  b  \: +  \: c)}}} \\  \\

{\bold{\mathsf{⟼  \:  \:  \:  \:  \:  \: 3x \:  -  \: 3x  \: = \:  0}}} \\  \\

Thus,

(x - a)³ + (x - b)³ + (x - c)³ - 3(x - a)(x - b)(x-c) = 0

Answered by Anonymous
4

Answer:

Given Equation is a + b + c = 3x.

Given (x - a)^3 + (x - b)^3 + (x - c)^3 - 3(x - a)(x - b)(x - c)  

Given Equation is in the form of a^3 + b^3 + c^3 - 3abc.

We know that a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)

= > (x - a + x - b + x - c)[(x - a)^2 + (x - b)^2 + (x - c)^2 - (x - a)(x - b) - (x - b)(x - a) - (x - c)(x - a)]  

= > 3x - (a + b + c)[(x - a)^2 + (x - b)^2 + (x - c)^2 - (x - a)(x - b) - (x - b)(x - a) - (x - c)(x - a)]

= > 3x - 3x  

= > 0.

Step-by-step explanation:

thanks..

Similar questions