Find the value of x & y in the following diagram. P Q R x 50 y 120
Answers
Answer:
Step-by-step explanation:
Find the values of the unknowns x and y in the following diagrams:
Solution 2:
(i) \angle y+\angle ACD\ =\ 180\degree\ \ \∠y+∠ACD = 180° {linear pair}
\angle y\ +\ 120\degree\ =\ 180\degree∠y + 120° = 180°
\angle y\ =\ 60\degree∠y = 60°
By using angle sum property
In triangle ABC
\angle A+\angle B+\ \angle C\ =\ 180\degree∠A+∠B+ ∠C = 180° { \angle A\ =\ x\ ,\ \angle C\ =\ y\∠A = x , ∠C = y }
x\ +50\degree+60\degree=\ 180\degreex +50°+60°= 180°
x\ =\ 180\degree-110\degreex = 180°−110°
x=\ 70\degreex= 70°
(ii) \angle EAD\ =\angle y\∠EAD =∠y {vertically opposite angle are same }
80\degree=\ \angle y80°= ∠y
By using angle sum property
In triangle ABC
\angle A+\angle B+\angle C\ =\ 180\degree∠A+∠B+∠C = 180°
80\degree+\ 50\degree\ +x\ =\ 180\degree80°+ 50° +x = 180°
x\ =\ 180\degree-130\degreex = 180°−130°
x\ =\ 50\degreex = 50°
(iii) By using angle sum property
In triangle ABC
\angle A+\angle B+\angle C\ =\ 180\degree∠A+∠B+∠C = 180°
50\degree+60\degree+y\ =\ 180\degree50°+60°+y = 180°
y=\ 180\degree-110\degreey= 180°−110°
y\ =\ 70\degreey = 70°
x+y\ =\ 180\degreex+y = 180° {linear pair }
x\ +\ 70\degree=\ 180\degreex + 70°= 180°
x\ =\ 110\degreex = 110°
(iv) x\ =\ \angle DCE\x = ∠DCE {vertically opposite angle are same }
60\degree=\ x\60°= x
By using angle sum property
In trianfle ABC,
\angle A+\angle B+\angle C\ =\ 180\degree∠A+∠B+∠C = 180°
30\degree+60\degree+y=\ 180\degree30°+60°+y= 180°
y\ =\ 180\degree-\ 90\degreey = 180°− 90°
y\ =\ 90\degreey = 90°
(v) \angle ECD+y\ =\ 180\degree∠ECD+y = 180°
90\degree=\ y\90°= y {vertically opposite angle are same }
In triangle ABC,
By using angle sum property,
\angle A+\angle B+\angle C\ =180\degree∠A+∠B+∠C =180°
x+x+90\degree=\ 180\degreex+x+90°= 180°
2x=180\degree-90\degree2x=180°−90°
2x=\ 90\degree2x= 90°
x\ =45\degreex =45°
(vi) by using angle sum property,
y\ =x=\ \angle A=\angle B=\angle Cy =x= ∠A=∠B=∠C {vertically opposite angle are same }
In triangle ABC
x+x+x\ =\ 180\degreex+x+x = 180°
3x=\ 180\degree3x= 180°
x=\frac{180\degree}{3}x=
3
180°
x\ =\ 60\degreex = 60°