Find the value of x and angles of the triangle
Answers
THE SUM OF THREE ANGLE OF A TRIANGLE IS 180 °.
SO.
2x-30 + 3x-50 + x+20 = 180.
6x -60 =180.
x-10 =30.
X= 40.
Angles are...(2 *40 -30)= 50°.
(3 *40 - 50) = 70°. (40+20)= 60°.
Concept:
Sum of all the interior angles is 180°.
Given:
The given angles are:
A=(2x-30)°
B=(3x-50)°
C=(x+20)°
To find:
We need to find the value of x.
Values of A, B and C.
Solution:
Now, the sum of all the interior angles is 180°.
Therefore,
∠A+∠B+∠C=180°
We know,
(2x-30)°+(3x-50)°+(x+20)°=180°
⇒2x+3x+x-30-50+20=180
⇒6x-60=180
⇒6x=180+60
⇒6x=240
⇒x==40°
Therefore, the value of x is 40°
Now, substituting values of x in angles of A, B and C.
For A,
∠A=2x-30
⇒∠A=2×40-30=80-30
⇒∠A=50°
For B,
∠B=3x-50
⇒∠B=3×40-50=120-50
⇒∠B=70°
For C,
∠C=x+20
⇒∠C=40+20
⇒∠C=60°
Therefore values of A, B and C are 50°, 70° and 60° respectively.