find the value of x and answer me immediately
Answers
GIven:
To FInd:
The value of x
Solution:
Rewriting 5⁰ = 1:
Rationalise the LHS by multiplying √3/√3:
Rewriting (0.6)² as a fraction:
Multiply both sides by 3:
Find x:
Dividing both sides by 9:
Answer:
GIven:
\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x
(5
0
+
3
2
)
=(0.6)
2
−3x
To FInd:
The value of x
Solution:
\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x
(5
0
+
3
2
)
=(0.6)
2
−3x
Rewriting 5⁰ = 1:
\sqrt{ \bigg(1 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x
(1+
3
2
)
=(0.6)
2
−3x
\sqrt{ \dfrac{5}{3} }= (0.6)^2 - 3x
3
5
=(0.6)
2
−3x
Rationalise the LHS by multiplying √3/√3:
\dfrac{\sqrt{15} }{3} = (0.6)^2 - 3x
3
15
=(0.6)
2
−3x
Rewriting (0.6)² as a fraction:
\dfrac{\sqrt{15} }{3} = \bigg( \dfrac{6}{10} \bigg)^2 - 3x
3
15
=(
10
6
)
2
−3x
\dfrac{\sqrt{15} }{3} = \dfrac{9}{25} - 3x
3
15
=
25
9
−3x
Multiply both sides by 3:
\sqrt{15} = \dfrac{27}{25} - 9x
15
=
25
27
−9x
Find x:
9x = \dfrac{27}{25} - \sqrt{15}9x=
25
27
−
15
9x = \dfrac{27 - 25\sqrt{15} }{25}9x=
25
27−25
15
Dividing both sides by 9:
x = \dfrac{27 - 25\sqrt{15} }{225}x=
225
27−25
15