Math, asked by abhinavsingh56749, 10 months ago

find the value of x and answer me immediately

Attachments:

Answers

Answered by TooFree
7

GIven:

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

To FInd:

The value of x

Solution:

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

Rewriting 5⁰ = 1:

\sqrt{ \bigg(1 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

\sqrt{  \dfrac{5}{3}  }= (0.6)^2 - 3x

Rationalise the LHS by multiplying √3/√3:

\dfrac{\sqrt{15} }{3} = (0.6)^2 - 3x

Rewriting (0.6)² as a fraction:

\dfrac{\sqrt{15} }{3} = \bigg( \dfrac{6}{10} \bigg)^2 - 3x

\dfrac{\sqrt{15} }{3}  =  \dfrac{9}{25} - 3x

Multiply both sides by 3:

\sqrt{15}  = \dfrac{27}{25}  - 9x

Find x:

9x = \dfrac{27}{25} - \sqrt{15}

9x = \dfrac{27 - 25\sqrt{15}  }{25}

Dividing both sides by 9:

x = \dfrac{27 - 25\sqrt{15}  }{225}

Answered by carrompooltoofan
1

Answer:

GIven:

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

(5

0

+

3

2

)

=(0.6)

2

−3x

To FInd:

The value of x

Solution:

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

(5

0

+

3

2

)

=(0.6)

2

−3x

Rewriting 5⁰ = 1:

\sqrt{ \bigg(1 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

(1+

3

2

)

=(0.6)

2

−3x

\sqrt{ \dfrac{5}{3} }= (0.6)^2 - 3x

3

5

=(0.6)

2

−3x

Rationalise the LHS by multiplying √3/√3:

\dfrac{\sqrt{15} }{3} = (0.6)^2 - 3x

3

15

=(0.6)

2

−3x

Rewriting (0.6)² as a fraction:

\dfrac{\sqrt{15} }{3} = \bigg( \dfrac{6}{10} \bigg)^2 - 3x

3

15

=(

10

6

)

2

−3x

\dfrac{\sqrt{15} }{3} = \dfrac{9}{25} - 3x

3

15

=

25

9

−3x

Multiply both sides by 3:

\sqrt{15} = \dfrac{27}{25} - 9x

15

=

25

27

−9x

Find x:

9x = \dfrac{27}{25} - \sqrt{15}9x=

25

27

15

9x = \dfrac{27 - 25\sqrt{15} }{25}9x=

25

27−25

15

Dividing both sides by 9:

x = \dfrac{27 - 25\sqrt{15} }{225}x=

225

27−25

15

Similar questions