Math, asked by Anonymous, 19 days ago

Find the value of x and verify it :-
 \\  \sf \displaystyle  \sf\frac{1}{x -3 }  -  \frac{x}{ {x}^{2}  - 9}  =  \frac{2}{3 - x}

Don't spam..!!​

Answers

Answered by мααɴѕí
6

Step-by-step explanation:

Answer refers to the attachment

Attachments:
Answered by anindyaadhikari13
11

Solution:

Given Equation:

\rm\longrightarrow \dfrac{1}{x-3}-\dfrac{x}{x^{2}-9}=\dfrac{2}{3-x}

Can be written as:

\rm\longrightarrow \dfrac{1}{x-3}-\dfrac{x}{(x+3)(x-3)}=\dfrac{2}{3-x}

\rm\longrightarrow \dfrac{1}{x-3}\bigg(1-\dfrac{x}{x+3}\bigg)=\dfrac{2}{3-x}

\rm\longrightarrow \dfrac{1}{x-3}\bigg(1-\dfrac{x}{x+3}\bigg)=\dfrac{-2}{x-3}

\rm\longrightarrow \bigg(1-\dfrac{x}{x+3}\bigg)=-2\ \ [x\neq3]

\rm\longrightarrow \dfrac{-x}{x+3}=-2-1

\rm\longrightarrow \dfrac{-x}{x+3}=-3

\rm\longrightarrow \dfrac{x}{x+3}=3

\rm\longrightarrow x=3x+9

\rm\longrightarrow -2x=9

\rm\longrightarrow x=\dfrac{-9}{2}

⊕ So, the value of x satifying the given equation is -9/2.

Answer:

  • x = -9/2

anindyaadhikari13: Thanks for the brainliest :)
Similar questions