Math, asked by krishajo, 7 months ago

find the value of X and y​

Attachments:

Answers

Answered by Anonymous
11

ANSWER✔

\red{\text{NOTE:- REFER THE ATTACHMENT.}}

\large\underline\bold{GIVEN,}

\sf\dashrightarrow ABCD\:is \: quadrilateral

\sf\dashrightarrow \angle DAB=102 \degree

\sf\dashrightarrow \angle DCB=95  \degree

\sf\dashrightarrow \angle CBE=120 \degree

\sf\dashrightarrow \angle ABC=y \degree

\sf\dashrightarrow \angle FDA=x \degree

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow \text{ the value of angle x and y.}

\large\underline\bold{SOLUTION,}

\sf\therefore \text{finding the value of angle y}

\sf\therefore \text{by angle sum property,}

\sf\dashrightarrow \angle ABC+ \angle CBE= 180\degree

\sf\implies y\degree+120\degree=180\degree

\sf\implies y= 180-120

\sf\dashrightarrow y= 60\degree

\large{\boxed{\bf{ \star\:\: \angle y= 60\degree\:\: \star}}}

\green{\text{BISECTING A QUADRILATERAL ABCD IN TWO PARTS OF A TRIANGLE, }}

\sf\therefore \triangle ADB \:and\: \triangle CDB

\sf\star \: \angle ABD = \angle BCD = \dfrac{1}{2}\: \angle BDC

\sf\dashrightarrow \angle ABD = \angle BCD = \dfrac{1}{2}\times (60)\degree

\sf\dashrightarrow \angle ABD = \angle BCD = 30\degree

\bf\therefore \: \angle ADC= \angle ADB + \angle BDC

\sf\therefore in \triangle ADB,

\sf\therefore \text{by angle sum property of a triangle,}

\sf\dashrightarrow \angle ADB + \angle DAB + \angle ABC= 180 \degree

\sf\implies \angle ADB+102+30=180\degree

\sf\implies \angle ADB +132=180\degree

\sf\implies \angle ADB= 180-132

\sf\implies \angle ADB= 48\degree

\sf\therefore in \triangle CDB,

\sf\therefore \text{by angle sum property of a triangle,}

\sf\dashrightarrow \angle CDB + \angle DBC + \angle DCB= 180 \degree

\sf\implies \angle CDB + 30+95=180\degree

\sf\implies \angle CDB +125=180

\sf\implies \angle CDB= 180-125

\sf\implies \angle CDB= 55\degree

\bf\therefore \: \angle ADC= \angle ADB + \angle BDC

\sf\dashrightarrow 48\degree + 55\degree

\sf\implies \angle ADC=103\degree

\sf\therefore \text{finding the value of angle x}

\sf\therefore \text{by angle sum property ,}

\sf\dashrightarrow \angle FDA + \angle ADC=180\degree

\sf\implies \angle x+103=180\degree

\sf\implies x=180-103

\sf\implies x=77\degree

\large{\boxed{\bf{ \star\:\: x=77\degree \:\: \star}}}

\large\underline\bold{THE\:VALUE\:OF\:y\:IS\:60\degree}

\large\underline\bold{THE\:VALUE\:OF\:x\:IS\:77\degree}

___________________

Attachments:
Similar questions