find the value of x and y by elimination method
Attachments:
Answers
Answered by
5
Solution
Given :-
- a²x - b²y = a + b ----------(1)
- a³x - b³y = a²b² -----------(2)
Find :-
- Value of x & y
Explanation
Elimination Method
Multiply by a in equ(1) & 1 in equ(2)
- a³x - b²ay = a²+ba
- a³x - b³y = a²b²
_________________Sub. it's(Eliminate X)
➩ -b²ay + b³y = a²+ba - a²b²
➩ y(b³-b²a) = (a² + ba - a²b²)
➩ y = (a² + ba - a²b²)/(b³ - b²a)
Keep Value of y in equ(1)
➩ a²x - b² * [ (a² + ba - a²b²)/(b³ - b²a)] = (a+b)
➩a²x - b² * [ a² + ab - a²b²)/b²(b-a)] = (a+b)
➩ a²x = (a+b) + (a² + ab - a²b²)/(b-a)
➩ a²x = [(a²-b²) + (a² + ab - a²b²)]/(b-a)
➩ x = [(2a² - b² + ab - a²b²)/a²(b-a)]
Hence
- Value of x = [(2a² - b² + ab - a²b²)/a²(b-a)]
- Value of y = (a² + ba - a²b²)/(b³ - b²a)
_________________
Answered by
5
* Answer↓
* G¡ven *
-------eq(1)
-------eq(2)
◇ Solution ◇
→ Consider both of the given equation (1) and →(2)Multiply by 'a' in equation (1)
So,
→by equation (1)×equation(2). 【 For Eliminating x 】
we get,
By equation (1)
→ putting the value of y in equation (1)
Similar questions