Find the value of x and y, if ACB=4y
Answers
Answer:
htwutwyeowi5itetwtiseyitewiyeykel74prp7eo6e7pyktoeoe6etktuweoyelywitwo52o6etoeyoelywylelyelyekyeo6eo66wtiwwtitwiti25u247246wry24u624624631w46375ueteti46iryiyririyotu
Answer:
x=30° and y=15°
Step-by-step explanation:
Here, ∠ADB+∠ADC=180°
⇨∠ADB+105°=180°
⇨ ∠ADB=180°-105°
=75°
In ∆ABD, by angle sum property,
∠DAB+∠ABD+∠ADB=180°
⇨ x+75°+75°=180°
⇨ x=180°-150°
∴x=30°
And, in ∆ABC, by angle sum property,
∠ACB+∠CAB+∠CBA=180°
⇨ 4y+(x+y)+75°=180°
⇨ 4y+30°+y=105°
⇨ 5y=75°
⇨ y=15
Hence, the required value of x is 30° and that of y is 15°.
Dude_i hope this help u