Find the value of x and y if (x-iy) (3+5i)=-6+24i
Answers
Answer:
The values of x and y are 3 & - 3 respectively.
Step-by-step-explanation:
We have given that,
( x - iy ) ( 3 + 5i ) = - 6 + 24i
We have to find the value of x and y.
Now,
( x - iy ) ( 3 + 5i ) = - 6 + 24i
⇒ x ( 3 + 5i ) - iy ( 3 + 5i ) = - 6 + 24i
⇒ 3x + 5xi - 3iy - 5i²y = - 6 + 24i
We know that,
i² = - 1
⇒ 3x + 5xi - 3iy - 5 * ( - 1 ) * y = - 6 + 24i
⇒ 3x + 5xi - 3iy + 5y = - 6 + 24i
⇒ ( 3x + 5y ) + ( 5x - 3y ) i = - 6 + 24i
By comparing both sides, we get,
3x + 5y = - 6 - - - ( 1 )
5x - 3y = 24 - - - ( 2 )
Multiplying equation ( 1 ) by 3 and equation ( 2 ) by 5, we get,
3 ( 3x + 5y ) = - 6 * 3
⇒ 9x + 15y = - 18 - - - ( 3 )
And,
5 ( 5x - 3y ) = 5 * 24
⇒ 25x - 15y = 120 - - - ( 4 )
By adding equations ( 3 ) & ( 4 ), we get,
9x + 15y + ( 25x - 15y ) = - 18 + 120
⇒ 9x + 15y + 25x - 15y = 102
⇒ 9x + 25x + 15y - 15y = 102
⇒ 34x = 102
⇒ x = 102 ÷ 34
⇒ x = 3
By substituting x = 3 in equation ( 1 ), we get,
3x + 5y = - 6 - - - ( 1 )
⇒ 3 * 3 + 5y = - 6
⇒ 9 + 5y = - 6
⇒ 5y = - 6 - 9
⇒ 5y = - 15
⇒ y = - 15 ÷ 5
⇒ y = - 3
∴ The values of x and y are 3 & - 3 respectively.