Math, asked by himanshiranga, 2 months ago

Find the value of x and y in the following parallelogram.

please explain in detail...

Attachments:

Answers

Answered by ⱮøøɳƇⲅυѕɦεⲅ
1

On the line BD

\bf \large \hookrightarrow \: 20 \degree = 2x + 4 \\  \\ \bf \large \hookrightarrow \: 2x = 20 \:  -  \: 4 \\  \\ \bf \large \hookrightarrow \: 2x = 16 \\  \\ \bf \large \hookrightarrow \: x =  \frac{16}{2}  \\  \\ \bf \large \hookrightarrow \: x = 8

________________________________

On the line AC

 \bf \large \hookrightarrow \: 22 = x  \: + \:  y \\

  • We know that, the value of x is 8.

  • Now, we put the value of x in the given equation.

_________________________________

\bf \large \hookrightarrow \: 22 \:  = \:  8 \:  +  \: y \\  \\ \bf \large \hookrightarrow \: 22 \:  -  \: 8 = y \\  \\ \bf \large \hookrightarrow14  \: =  \: y \\  \\ \bf \Large \implies \: Value  \:  \: of  \:  \: y  \:  \: is  \:  \: 14

Answered by jiakher84
1

Answer:

On the line BD

\begin{gathered}\bf \large \hookrightarrow \: 20 \degree = 2x + 4 \\ \\ \bf \large \hookrightarrow \: 2x = 20 \: - \: 4 \\ \\ \bf \large \hookrightarrow \: 2x = 16 \\ \\ \bf \large \hookrightarrow \: x = \frac{16}{2} \\ \\ \bf \large \hookrightarrow \: x = 8\end{gathered}

↪20°=2x+4

↪2x=20−4

↪2x=16

↪x=

2

16

↪x=8

On the line AC

↪22=x+y

We know that, the value of x is 8.

Now, we put the value of x in the given equation.

Similar questions