Math, asked by ylvell, 10 months ago

find the value of x and y..
show the full calculation ​

Attachments:

Answers

Answered by Anonymous
50

Given :-

\sf{\implies \frac{5 + \sqrt{11} }{3 - 2\sqrt{11} } = x + y\sqrt{11}  }\\

To Find :-

  • Value of x and y .

Solution :-

Taking LHS firstly :-

\sf{\implies \; LHS = \frac{5 +\sqrt{11}  }{3 - 2\sqrt{11} } }\\

Now rationalising

\sf{\implies \frac{5 +\sqrt{11}  }{3 - 2\sqrt{11}} \times \frac{3 +2\sqrt{11}  }{3 + 2\sqrt{11}} }\\

\sf{\implies \; Numerator = 5+\sqrt{11} \times (3+2\sqrt{11})= 15 + 3\sqrt{11} + 10\sqrt{11} + 22  }\\

\sf{\implies \; Numerator = 15 + \sqrt{11}(3 + 10) + 22 = 15 + 13\sqrt{11} + 22  }\\

\sf{\implies \; Denominator = 3 -2\sqrt{11} \times (3 + 2\sqrt{11} )}\\

\sf{\implies \; Denominator = (3)^{2} - (2\sqrt{11} )^{2} }\\

\sf{\implies \; Denominator = 9 - 44 = -35}\\

\sf{\implies \; LHS = \frac{37 + 13\sqrt{11} }{-35} }\\

Comparing both sides we got

\sf{\implies \frac{37 + 13\sqrt{11} }{-35 }  = x + y\sqrt{11} }\\

\sf{\implies x =( \frac{-37}{35}) \; and y = (- \frac{13}{35} ) }\\

Answered by BrainlyPopularman
6

Question :

If x and y are rational numbers and  \: { \bold{ \dfrac{5 +  \sqrt{11} }{3 - 2 \sqrt{11} }  = x + y \sqrt{11} }} \: , Find the values of x and y.

 \\ \rule{220}{2} \\

ANSWER :

GIVEN :

  \\ \: { \huge{.}}  \:  \:  \:  \: { \bold{ \dfrac{5 +  \sqrt{11} }{3 - 2 \sqrt{11} }  = x + y   \sqrt{11} }} \: \\

TO FIND :

▪︎ Value of x and y .

SOLUTION :

  \\ \implies{ \bold{ \dfrac{5 +  \sqrt{11} }{3 - 2 \sqrt{11} }  = x + y   \sqrt{11} }} \: \\

• Now rationalization –

  \\ \implies{ \bold{ \dfrac{5 +  \sqrt{11} }{3 - 2 \sqrt{11} }  \times  \dfrac{3 + 2 \sqrt{11} }{3 + 2 \sqrt{11} }  = x + y   \sqrt{11} }} \: \\

  \\ \implies{ \bold{ \dfrac{(5 +  \sqrt{11} )(3 + 2 \sqrt{11} )}{(3 - 2 \sqrt{11})(3 + 2 \sqrt{11}  )}  = x + y   \sqrt{11} }} \: \\

• using identity –

  \\  \implies \large { \pink{ \boxed{ \bold{ (a + b)(a - b) =  {a}^{2} -  {b}^{2}  }}}} \: \\

• So that –

  \\ \implies{ \bold{ \dfrac{15 + 10 \sqrt{11} + 3 \sqrt{11}  + 2(11)}{{3 }^{2} -  {(2 \sqrt{11} )}^{2}}  = x + y   \sqrt{11} }} \: \\

  \\ \implies{ \bold{ \dfrac{15 +  13 \sqrt{11}  + 2(11)}{9 - 44}  = x + y   \sqrt{11} }} \: \\

  \\ \implies{ \bold{ \dfrac{37+  13 \sqrt{11}  }{9 - 44}  = x + y   \sqrt{11} }} \: \\

  \\ \implies{ \bold{ \dfrac{37+  13 \sqrt{11}  }{ - 35}  = x + y   \sqrt{11} }} \: \\

  \\ \implies{ \bold{ -  \frac{37}{35}  -  \frac{13}{35}   \sqrt{11}   = x + y   \sqrt{11} }} \: \\

• Now compare –

  \\ \implies \large{ \red{ \bold{x =  -  \frac{37}{35}  \:  \:  and\:  \: y =  -  \frac{13}{35}   }}} \: \\

 \\ \rule{220}{2} \\

Similar questions