find the value of x and y which satisfy the following equation (x, y€R) 2) x+1\1+i + y-1\1-i=i
Answers
Answered by
5
Answer :
x = -2 , y = 2
Solution :
We have ,
(x + 1)/(1 + i) + (y - 1)/(1 - i) = i where x,y € R .
Now ,
=> (x + 1)/(1 + i) + (y - 1)/(1 - i) = i
=> [(x + 1)(1 - i) + (y - 1)(1 + i)] / (1 + i)(1 - i) = i
=> [x - ix + 1 - i + y + iy - 1 - i] / [1² - i²] = i
=> [x + y - ix + iy - 2i] / [1 - (-1)] = i
=> [(x + y) + (-x + y - 2)i] / [1 + 1] = i
=> [(x + y) + (-x + y - 2)i] / 2 = i
=> [(x + y) + (-x + y - 2)i] = 2i
=> (x + y) + (-x + y - 2)i = 0 + 2i
Now ,
Comparing both the sides , we have ;
x + y = 0 ------(1)
-x + y - 2 = 2 → -x + y = 4 ------(2)
Now ,
Adding eq-(1) and (2) , we get ;
=> x + y - x + y = 0 + 4
=> 2y = 4
=> y = 4/2
=> y = 2
Now ,
Putting y = 2 in eq-(1) , we get ;
=> x + y = 0
=> x + 2 = 0
=> x = -2
Hence ,
x = -2 , y = 2
Similar questions