Math, asked by soniamanchanda97, 9 months ago

Find the value of x by applying dividendo and componendo​

Attachments:

Answers

Answered by ThinkingBoy
1

\frac{\sqrt{x+5}+\sqrt{x-16}  }{\sqrt{x+5}-\sqrt{x-16}} = \frac{7}{3}

According to dividendo and componendo​ rule

If, \frac{a}{b} = \frac{c}{d}, then

\big\black\boxed{\frac{a+b}{a-b}=\frac{c+d}{c-d}  }

Applying dividendo and componendo​ in given question

\frac{\sqrt{x+5}+\sqrt{x-16} + \sqrt{x+5}-\sqrt{x-16} }{\sqrt{x+5}+\sqrt{x-16}-(\sqrt{x+5}-\sqrt{x-16})} = \frac{7+3}{7-3}

\frac{2\sqrt{x+5}}{2\sqrt{x-16}} = \frac{10}{4}

\frac{x+5}{x-16} = \frac{25}{4}

Applying dividendo and componendo again

\frac{x+5+x-16}{x+5-(x-16)} = \frac{25+4}{25-4}

\frac{2x-11}{21} = \frac{29}{21}

2x-11 = 29

2x = 40

\huge\black\boxed{x=20}

Similar questions