Math, asked by adityabc2006, 7 months ago

find the value of x
correct answer please
if nice explanation brainliest answer will be given
also ok if link is given

Attachments:

Answers

Answered by sethrollins13
33

Given :

  • ∠POY = 90°
  • a = 2
  • b = 3

To Find :

  • Value of x.

Solution :

\longmapsto\tt{a+b+90\degree=180\degree\:(Angles\:on\:one\:line)}

\longmapsto\tt{2z+3z+90\degree=180\degree}

\longmapsto\tt{5z+90\degree=180\degree}

\longmapsto\tt{5z=180\degree-90\degree}

\longmapsto\tt{5z=90\degree}

\longmapsto\tt{z=\cancel\dfrac{90}{5}}

\longmapsto\tt\bf{z=18}

Value of z is 18 ....

Therefore :

\longmapsto\tt{Measure\:of\:a=2(18)}

\longmapsto\tt\bf{36\degree}

\longmapsto\tt{Meaure\:of\:b=3(18)}

\longmapsto\tt\bf{54\degree}

Now ,

\longmapsto\tt{b+x=180\degree\:(Linear\:Pair)}

\longmapsto\tt{54\degree+x=180\degree}

\longmapsto\tt{x=180\degree-54\degree}

\longmapsto\tt\bf{x=126\:\degree}

Attachments:
Answered by sk181231
145

Answer:

\mathcal\red{AnswEr}

Given :

  • ∠POY = 90°
  • a = 2
  • b = 3

To find :

  • Value of x

Solution :

➵ a + b + 90° = 180°

➵ 2z + 3z + 90° = 180°

➵ 5z + 90° = 180°

➵ 5z - 180° = 90°

 z = ➵\cancel\dfrac{90}{5}

➵ z = 18

Therefore :

➵ Measure of a = 2 ( 18 )

➵ 36°

➵ Measure of b = 3 ( 18 )

➵ 54°

Now :

➵ b + x = 180° ( Linear Pair )

➵ 54° + x = 180°

➵ x = 180° - 54°

➵ 126°

\boxed{x = 126°}

Attachments:
Similar questions